
Package ‘partitions’
April 2, 2010

Type Package

Title Additive partitions of integers

Version 1.9-8

Date 2009-04-28

Author Robin K. S. Hankin

Depends polynom

Maintainer Robin K. S. Hankin <hankin.robin@gmail.com>

Description Additive partitions of integers. Enumerates the partitions, unequal partitions, and
restricted partitions of an integer; the three corresponding partition functions are also given. Set
partitions are now included.

License GPL

Repository CRAN

Date/Publication 2010-04-02 17:08:25

R topics documented:
partitions-package . 2
as.matrix.partition . 3
bin . 3
conjugate . 4
nextpart . 5
P . 7
parts . 9
print.partition . 11
setparts . 12
summary.partition . 14

Index 16

1

2 partitions-package

partitions-package Integer partitions

Description

Routines to enumerate all partitions of an integer; includes restricted and unequal partitions.

Details

This package comprises eight functions: P(), Q(), R(), and S() give the number of partitions,
unequal partitions, restricted partitions, and block partitions of an integer.

Functions parts(), diffparts(), restrictedparts(), and blockparts() enumer-
ate these partitions.

Function conjugate() gives the conjugate of a partition and function durfee() gives the size
of the Durfee square.

NB the emphasis in this package is terse, efficient C code. This means that there is a minimum of
argument checking. For example, function conjugate() assumes that the partition is in stan-
dard form (ie nonincreasing); supplying a vector in nonstandard form will result in garbage being
returned silently. Note that a block partition is not necessarily in standard form.

Author(s)

Robin K. S. Hankin

References

• G. E. Andrews 1998 The Theory of Partitions, Cambridge University Press
• M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions, New York:

Dover
• G. H. Hardy and E. M. Wright 1985 An introduction to the theory of numbers, Clarendon

Press: Oxford (fifth edition)
• R. K. S. Hankin 2006. “Additive integer partitions in R”. Journal of Statistical Software,

Volume 16, code snippet 1
• R. K. S. Hankin 2007. “Urn sampling without replacement: enumerative combinatorics in R”.

Journal of Statistical Software, Volume 17, code snippet 1
• R. K. S. Hankin 2007. “Set partitions in R”. Journal of Statistical Software, Volume 23, code

snippet 2

Examples

parts(5)
diffparts(9)
restrictedparts(15,10)
P(10,give=TRUE)
Q(10,give=TRUE)
R(5,10)

as.matrix.partition 3

as.matrix.partition
Coerce partitions to matrices and vice versa

Description

Coercion to and from partitions

Usage

as.matrix.partition(x, ...)
as.partition(x, ...)

Arguments

x Object to be coerced

... Further arguments

Author(s)

Robin K. S. Hankin

Examples

as.matrix(parts(5))

bin Sundry binary functionality

Description

Utilities to convert things to binary

Usage

tobin(n, len, check=TRUE)
todec(bin)
comptobin(comp, check=TRUE)
bintocomp(bin, use.C=TRUE, check=TRUE)

4 conjugate

Arguments

n Integer, to be converted to binary by function tobin()

len Length of the binary vector returned by function tobin()

bin Binary: a vector of 0s and 1s

comp A composition

check Boolean, with default TRUE meaning to perform various checks

use.C Boolean, with default TRUE meaning to use C

Details

These functions are not really intended for the end user; they are used in nextcomposition().

• Function tobin() converts integer n to a binary string of length len

• Function todec() converts a binary string to decimal, so todec(tobin(n,i))==n,
provided i is big enough

• Function comptobin() converts a composition to binary

• Function bintocomp() converts a binary string to a composition

Author(s)

Robin K. S. Hankin

References

Wikipedia 2008. “Composition (number theory) — Wikipedia, The Free Encyclopedia”, http://
en.wikipedia.org/w/index.php?title=Composition_(number_theory)&oldid=
243080178; Online; accessed 3-February-2009

Examples

tobin(10,5)
todec(tobin(10,5))
comptobin(c(1,1,4))
bintocomp(c(1,1,0,0,1,1,1,1))

conjugate Conjugate partitions and Durfee squares

Description

Given a partition, provide its conjugate or Durfee square

Usage

conjugate(x)
durfee(x)

http://en.wikipedia.org/w/index.php?title=Composition_(number_theory)&oldid=243080178
http://en.wikipedia.org/w/index.php?title=Composition_(number_theory)&oldid=243080178
http://en.wikipedia.org/w/index.php?title=Composition_(number_theory)&oldid=243080178

nextpart 5

Arguments

x Either a vector describing a partition, in standard form (ie nonincreasing); or a
matrix whose columns are partitions in standard form

Details

Conjugation is described in Andrews, and (eg) Hardy and Wright.

Essentially, conjugate() carries out R idiom rev(cumsum(table(factor(a[a>0],levels=max(a):1)))),
but faster.

The “Durfee square” of a partition is defined on page 281 of Hardy and Wright. It is the largest
square of nodes contained in the partition’s Ferrers graph. Function durfee() returns the side of
the Durfee square which Andrews denotes d(λ). It is equivalent to R idiom function(a){sum(a>=1:length(a))},
but faster.

Value

Returns either a partition in standard form, or a matrix whose columns are partitions in standard
form.

Note

If argument x is not nonincreasing, all bets are off: these functions will not work and will silently
return garbage. Caveat emptor! (output from blockparts() is not necessarily non-increasing)

Author(s)

Robin K. S. Hankin

Examples

parts(5)
conjugate(parts(5))

restrictedparts(6,4)
conjugate(restrictedparts(6,4))

durfee(10:1)

nextpart Next partition

Description

Given a partition, return the “next” one; or determine whether it is the last one.

6 nextpart

Usage

nextpart(part, check=TRUE)
islastpart(part)
firstpart(n)
nextdiffpart(part, check=TRUE)

islastdiffpart(part)
firstdiffpart(n)
nextrestrictedpart(part, check=TRUE)

islastrestrictedpart(part)
firstrestrictedpart(n, m, include.zero=TRUE)
nextblockpart(part, f, n=sum(part), include.fewer=FALSE, check=TRUE)

islastblockpart(part, f, n=NULL , include.fewer=FALSE)
firstblockpart(f, n=NULL , include.fewer=FALSE)
nextcomposition(comp, restricted, include.zero=TRUE, check=TRUE)

islastcomposition(comp, restricted, include.zero=TRUE)
firstcomposition(n, m=NULL , include.zero=TRUE)

Arguments

part,comp A partition or composition

check Boolean, with default TRUE meaning to carry out various safety checks; the
next() functions use C calls which might crash the session with some inputs

f, n, include.fewer, m, include.zero
Other arguments as per the vectorized version

restricted In function nextcomposition() and islastcomposition(), Boolean,
with TRUE meaning to consider compositions of fixed length [eg, to iterate
through the columns of compositions(6,3)], and FALSE meaning to con-
sider compositions of any length [eg to iterate through the columns of compositions(6)]

Details

These functions are intended to enumerate partitions one at a time, eliminating the need to store a
huge matrix. This is useful for optimization over large domains and makes it possible to investigate
larger partitions than is possible with the vectorized codes.

The idea is to use a first...() function to generate the first partition, then iterate using a
next...() function, stopping when the islast...() function returns TRUE.

An example is given below, in which the “scrabble” problem is solved; note the small size of the
sample space. More examples are given in the tests/aab.R file.

Note

Functions nextpart() and nextdiffpart() require a vector of the right length: they require
and return a partition padded with zeros. Functions nextrestrictedpart() and nextblockpart()
work with partitions of the specified length. Function nextcomposition() truncates any zeros
at the end of the composition. This behaviour is inherited from the C code.

In functions nextcomposition() and firstcomposition(), argument include.zero
is ignored if restricted is FALSE.

P 7

I must say that the performance of these functions is terrible; they are much much slower than their
vectorized equivalents. The magnitude of the difference is much larger than I expected. Heigh ho.
Frankly you would better off working directly in C.

Author(s)

Robin K. S. Hankin

See Also

parts

Examples

Do the optimization in scrabble vignette, one partition at a time:
(but with a smaller letter bag)
scrabble <- c(a=9 , b=2 , c=2 , d=4 , e=12 , f=2 , g=3)

f <- function(a){prod(choose(scrabble,a))/choose(sum(scrabble),7)}
bestsofar <- 0
a <- firstblockpart(scrabble,7)
while(!islastpart(a)){
jj <- f(a)
if(jj>bestsofar){
bestsofar <- jj
bestpart <- a

}
a <- nextblockpart(a,scrabble)

}

P Number of partitions of an integer

Description

Given an integer, P() returns the number of additive partitions, Q() returns the number of unequal
partitions, and R() returns the number of restricted partitions. Function S() returns the number of
block partitions.

Usage

P(n, give = FALSE)
Q(n, give = FALSE)
R(m, n, include.zero = FALSE)
S(f, n = NULL, include.fewer = FALSE)

8 P

Arguments

n Integer whose partition number is desired. In function S(), the default of NULL
means to return the number of partitions of any size

m In function R(), the order of the decomposition

give Boolean, with default FALSE meaning to return just P(n) or Q(n) and TRUE
meaning to return P(1:n) or Q(1:n) (this option takes no extra computation)

include.zero In restrictedparts(), Boolean with default FALSE meaning to count
only partitions of n into exactlym parts; and TRUEmeaning to include partitions
of n into at most m parts (because parts of zero are included)

include.fewer
In function blockparts(), Boolean with default FALSE meaning to return
partitions into exactly n and TRUE meaning to return partitions into at most n

f In function S(), the stack vector

Details

Functions P() and Q() use Euler’s recursion formula. Function R() enumerates the partitions
using Hindenburg’s method (see Andrews) and counts them until the recursion bottoms out.

Function S() finds the coefficient of xn in the generating function
∏L

i=1

∑fi

j=0 x
j , where L is the

length of f, using the polynom package.

All these functions return a double.

Note

Functions P() and Q() use unsigned long long integers, a type which is system-dependent.
For me, P() works for n equal to or less than 416, and Q() works for n less than or equal to 792.
YMMV; none of the methods test for overflow, so use with care!

Author(s)

Robin K. S. Hankin; S() is due to an anonymous JSS referee

Examples

P(10,give=TRUE)
Q(10,give=TRUE)
R(10,20,include.zero=FALSE)
R(10,20,include.zero=TRUE)

S(1:4,5)

parts 9

parts Enumerate the partitions of an integer

Description

Given an integer, return a matrix whose columns enumerate various partitions.

Function parts() returns the unrestricted partitions; function diffparts() returns the un-
equal partitions; function restrictedparts() returns the restricted partitions; function blockparts()
returns the partitions subject to specified maxima; function compositions() returns all compo-
sitions of the argument; and function allperms() returns all permutations.

Usage

parts(n)
diffparts(n)
perms(n)
restrictedparts(n, m, include.zero=TRUE, decreasing=TRUE)
blockparts(f, n=NULL, include.fewer=FALSE)
compositions(n, m=NULL, include.zero=TRUE)

Arguments

n Integer to be partitioned. In function blockparts(), the default of NULL
means to return all partitions of any size

m In functions restrictedparts() and compositions(), the order of the
partition

include.zero In functions restrictedparts() and compositions(), Boolean with
default FALSE meaning to include only partitions of n into exactly m parts; and
TRUE meaning to include partitions of n into at most m parts (because zero
parts are included)

include.fewer
In function blockparts(), Boolean with default FALSE meaning to return
vectors whose sum is exactly n and TRUE meaning to return partitions whose
sum is at most n

decreasing In restrictedparts(), Boolean with default TRUE meaning to return par-
titions whose parts are in decreasing order and FALSE meaning to return parti-
tions in lexicographical order, as appearing in Hindenburg’s algorithm. Note that
setting to decreasing to FALSE has the effect of making conjugate()
return garbage

f In function blockparts(), a vector of strictly positive integers that gives the
maximal number of blocks; see details

10 parts

Details

• Function parts() uses the algorithm in Andrews. Function diffparts() uses a very
similar algorithm that I have not seen elsewhere. These functions behave strangely if given an
argument of zero.

• Function restrictedparts() uses the algorithm in Andrews, originally due to Hinden-
burg. For partitions into at most m parts, the same Hindenburg’s algorithm is used but with a
start vector of c(rep(0,m-1),n).

• Function blockparts() enumerates the compositions of an integer subject to a maximum
criterion: given vector y = (y1, . . . , yn) all sets of a = (a1, . . . , an) satisfying

∑p
i=1 ai = n

subject to 0 ≤ ai ≤ yi for all i are given in lexicographical order. If argument y includes zero
elements, these are treated consistently (ie a position with zero capacity).
If n takes its default value of NULL, then the restriction

∑p
i=1 ai = n is relaxed (so that the

numbers may sum to anything). Note that these solutions are not necessarily in standard form,
so functions durfee() and conjugate() may fail.

• Function compositions() returns all 2n−1 ways of partitioning an integer; thus 4+1+1 is
distinct from 1+4+1 or 1+1+4. This function is different from all the others in the package
in that it is written in R; it is not clear that C would be any faster.

Note

These vectorized functions return a matrix whose columns are the partitions. If this matrix is
too large, consider enumerating the partitions individually using the functionality documented in
nextpart.Rd.

One commonly encountered idiom is blockparts(rep(n,n),n), which is equivalent to compositions(n,n)
[Sloane’s A001700].

The C code for allperms() is not written by me (grabbed from the internet with no clear author).

Author(s)

Robin K. S. Hankin

References

• G. E. Andrews. “The theory of partitions”, Cambridge University Press, 1998

• R. K. S. Hankin 2006. “Additive integer partitions in R”. Journal of Statistical Software,
Volume 16, code snippet 1

• R. K. S. Hankin 2007. “Urn sampling without replacement: enumerative combinatorics in R”.
Journal of Statistical Software, Volume 17, code snippet 1

• R. K. S. Hankin 2007. “Set partitions in R”. Journal of Statistical Software, Volume 23, code
snippet 2

• N. J. A. Sloane, 2008, The On-Line Encyclopedia of Integer Sequences, www.research.
att.com/~njas/sequences/, Sequence A001700

See Also

nextpart

www.research.att.com/~njas/sequences/
www.research.att.com/~njas/sequences/

print.partition 11

Examples

parts(5)
diffparts(10)
perms(4)
restrictedparts(9,4)
restrictedparts(9,4,FALSE)
restrictedparts(9,4,decreasing=TRUE)

blockparts(1:4)
blockparts(1:4,3)
blockparts(1:4,3,include.fewer=TRUE)

blockparts(c(4,3,3,2),5) # Knuth's example, Fascicle 3a, p16

compositions(3)

print.partition Print methods for partition object

Description

A print method for partition objects and summary partition objects, including various configurable
options

Usage

print.partition(x, mat = getOption("matrixlike"), h =
getOption("horiz"), ...)
print.summary.partition(x, ...)

Arguments

x Object to be printed: an object of class either partition or summary.partition

mat Boolean, with TRUEmeaning to print like a matrix, and any other value meaning
to print without column names (which usually results in more compact appear-
ance)

h Boolean governing the orientation of the printed matrix, with TRUE meaning to
print with the rows being the partitions and any other value (the default) meaning
to print the transpose

... Further arguments provided for compatibility

Author(s)

Robin K. S. Hankin

12 setparts

Examples

print(parts(5))

summary(parts(7))

setparts Set partitions

Description

Enumeration of set partitions

Usage

setparts(x)

Arguments

x If a vector of length 1, the size of the set to be partitioned. If a vector of length
greater than 1, return all equivalence relations with equivalence classes with
sizes of the elements of x. If a matrix, return all equivalence classes with sizes
of the columns of x

Details

A partition of a set S = {1, . . . , n} is a family of sets T1, . . . , Tk satisfying

• i 6= j −→ Ti ∩ Tj = ∅
• ∪k

i=1Tk = S

• Ti 6= ∅ for i = 1, . . . , k

The induced equivalence relation has i ∼ j if and only if i and j belong to the same partition.

There are exactly fifteen ways to partition a set of four elements:

(1234)
(123)(4), (124)(3), (134)(2), (234)(1)
(12)(34), (13)(24), (14)(23)
(12)(3)(4), (13)(2)(4), (23)(1)(4), (24)(1)(3), (34)(1)(2)
(1)(2)(3)(4)

Note that (12)(3)(4) is the same partition as, for example, (3)(4)(21) as the equivalence relation is
the same.

Consider partitions of a set S of five elements (named 1, 2, 3, 4, 5) with sizes 2,2,1. These may be
enumerated as follows:

> u <- c(2,2,1)

setparts 13

> setparts(u)

[1,] 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3
[2,] 2 2 3 1 1 1 2 2 3 2 2 3 1 1 1
[3,] 3 2 2 3 2 2 1 1 1 3 2 2 2 1 2
[4,] 2 3 2 2 3 2 3 2 2 1 1 1 2 2 1
[5,] 1 1 1 2 2 3 2 3 2 2 3 2 1 2 2

See how each column has two 1s, two 2s and one 3. This is because the first and second classes
have size two, and the third has size one.

The first partition, x=c(1,2,3,2,1), is read “class 1 contains elements 1 and 5 (because the
first and fifth element of x is 1); class 2 contains elements 2 and 4 (because the second and fourth
element of x is 2); and class 3 contains element 3 (because the third element of x is 3)”. Formally,
class i has elements which(x==u[i]).

Value

Returns a matrix each of whose columns show a set partition; an object of class "partition".
Type ?print.partition to see how to change the options for printing.

Author(s)

Luke G. West (C++) and Robin K. S. Hankin (R)

References

• R. K. S. Hankin 2006. Additive integer partitions in R. Journal of Statistical Software, Code
Snippets 16(1)

• R. K. S. Hankin 2007. “Set partitions in R”. Journal of Statistical Software, Volume 23, code
snippet 2

See Also

parts, print.partition

Examples

setparts(4) # all partitions of a set of 4 elements

setparts(c(3,3,2)) # all partitions of a set of 8 elements
into sets of sizes 3,3,2.

jj <- restrictedparts(5,3)
setparts(jj) # partitions of a set of 5 elements into

at most 3 sets

setparts(conjugate(jj)) # partitions of a set of 5 elements into
sets not exceeding 3 elements

14 summary.partition

setparts(diffparts(5)) # partitions of a set of 5 elements into
sets of different sizes

summary.partition Provides a summary of a partition

Description

Provides a summary of an object of class partition: usually the first and last few partitions
(columns)

Usage

summary.partition(object, ...)

Arguments

object Partition

... Further arguments; see details section below

Details

The ellipsis arguments are used to pass how many columns at the start and the end of the matrix are
selected; this defaults to 10.

The function is designed to behave as expected: if there is an argument named “n”, then this is
used. If there is no such argument, the first one is used.

Value

A summary object is a list, comprising three elements:

shortened Boolean, with TRUE meaning that the middle section of the matrix is ommitted,
and FALSE meaning that the entire matrix is returned because n is too big

n Number of columns to return at the start and the end of the matrix

out Matrix returned: just the first and last n columns (if shortened is TRUE), or
the whole matrix if not

Author(s)

Robin K. S. Hankin

summary.partition 15

Examples

summary(parts(7))

summary(parts(11),3)

Index

∗Topic math
as.matrix.partition, 3
conjugate, 4
nextpart, 5
P, 7
parts, 9
print.partition, 11
setparts, 12
summary.partition, 14

∗Topic package
partitions-package, 1

as.matrix.partition, 3
as.partition

(as.matrix.partition), 3

bin, 3
bintocomp (bin), 3
blockparts (parts), 9

compositions (parts), 9
comptobin (bin), 3
conjugate, 4

diffparts (parts), 9
Durfee (conjugate), 4
durfee (conjugate), 4

firstblockpart (nextpart), 5
firstcomposition (nextpart), 5
firstdiffpart (nextpart), 5
firstpart (nextpart), 5
firstrestrictedpart (nextpart), 5

islastblockpart (nextpart), 5
islastcomposition (nextpart), 5
islastdiffpart (nextpart), 5
islastpart (nextpart), 5
islastrestrictedpart (nextpart), 5

nextblockpart (nextpart), 5

nextcomposition (nextpart), 5
nextdiffpart (nextpart), 5
nextpart, 5, 10
nextrestrictedpart (nextpart), 5

P, 7
partitions (partitions-package), 1
partitions-package, 1
parts, 7, 9, 13
perms (parts), 9
print.partition, 11, 13
print.summary.partition

(print.partition), 11

Q (P), 7

R (P), 7
restrictedparts (parts), 9

S (P), 7
setparts, 12
summary.partition, 14

tobin (bin), 3
todec (bin), 3

16

	partitions-package
	as.matrix.partition
	bin
	conjugate
	nextpart
	P
	parts
	print.partition
	setparts
	summary.partition
	Index

