Package 'partitions'

April 2, 2010
Type Package
Title Additive partitions of integers
Version 1.9-8
Date 2009-04-28
Author Robin K. S. HankinDepends polynomMaintainer Robin K. S. Hankin hankin.robin@gmail.com
Description Additive partitions of integers. Enumerates the partitions, unequal partitions, andrestricted partitions of an integer; the three corresponding partition functions are also given. Setpartitions are now included.
License GPL
Repository CRAN
Date/Publication 2010-04-02 17:08:25
R topics documented:
partitions-package 2
as.matrix.partition 3
bin 3
conjugate 4
nextpart 5
P. 7
parts 9
print.partition 11
setparts 12
summary.partition 14
Index 16

```
partitions-package Integer partitions
```


Description

Routines to enumerate all partitions of an integer; includes restricted and unequal partitions.

Details

This package comprises eight functions: $P(), Q(), R()$, and $S()$ give the number of partitions, unequal partitions, restricted partitions, and block partitions of an integer.
Functions parts(), diffparts(), restrictedparts(), and blockparts() enumerate these partitions.

Function conjugate () gives the conjugate of a partition and function durfee() gives the size of the Durfee square.
NB the emphasis in this package is terse, efficient C code. This means that there is a minimum of argument checking. For example, function conjugate () assumes that the partition is in standard form (ie nonincreasing); supplying a vector in nonstandard form will result in garbage being returned silently. Note that a block partition is not necessarily in standard form.

Author(s)

Robin K. S. Hankin

References

- G. E. Andrews 1998 The Theory of Partitions, Cambridge University Press
- M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions, New York: Dover
- G. H. Hardy and E. M. Wright 1985 An introduction to the theory of numbers, Clarendon Press: Oxford (fifth edition)
- R. K. S. Hankin 2006. "Additive integer partitions in R". Journal of Statistical Software, Volume 16, code snippet 1
- R. K. S. Hankin 2007. "Urn sampling without replacement: enumerative combinatorics in R". Journal of Statistical Software, Volume 17, code snippet 1
- R. K. S. Hankin 2007. "Set partitions in R". Journal of Statistical Software, Volume 23, code snippet 2

Examples

```
parts(5)
diffparts(9)
restrictedparts(15,10)
P(10,give=TRUE)
Q(10,give=TRUE)
R(5,10)
```

```
as.matrix.partition
    Coerce partitions to matrices and vice versa
```


Description

Coercion to and from partitions

Usage

```
as.matrix.partition(x, ...)
as.partition(x, ...)
```


Arguments

x	Object to be coerced
\ldots.	Further arguments

Author(s)

Robin K. S. Hankin

Examples

as.matrix(parts(5))
bin Sundry binary functionality

Description

Utilities to convert things to binary

Usage

```
tobin(n, len, check=TRUE)
todec(bin)
comptobin(comp, check=TRUE)
bintocomp(bin, use.C=TRUE, check=TRUE)
```


Arguments

n	Integer, to be converted to binary by function tobin ()
len	Length of the binary vector returned by function tobin()
bin	Binary: a vector of 0s and 1s
comp	A composition
check	Boolean, with default TRUE meaning to perform various checks
use.C	Boolean, with default TRUE meaning to use C

Details

These functions are not really intended for the end user; they are used in nextcomposition().

- Function tobin() converts integer n to a binary string of length len
- Function todec () converts a binary string to decimal, so todec (tobin(n,i))==n, provided i is big enough
- Function comptobin () converts a composition to binary
- Function bintocomp () converts a binary string to a composition

Author(s)

Robin K. S. Hankin

References

Wikipedia 2008. "Composition (number theory) — Wikipedia, The Free Encyclopedia", http: / / en.wikipedia.org/w/index.php?title=Composition_(number_theory) \&oldid= 243080178 ; Online; accessed 3-February-2009

Examples

```
tobin(10,5)
todec(tobin(10,5))
comptobin(c(1,1,4))
bintocomp(c(1,1,0,0,1,1,1,1))
```


Description

Given a partition, provide its conjugate or Durfee square

Usage

```
conjugate(x)
durfee(x)
```


Arguments

$\mathrm{x} \quad$ Either a vector describing a partition, in standard form (ie nonincreasing); or a matrix whose columns are partitions in standard form

Details

Conjugation is described in Andrews, and (eg) Hardy and Wright.
Essentially, conjugate () carries out Ridiom rev (cumsum (table (factor (a[a>0], levels=max (a):1))) , but faster.

The "Durfee square" of a partition is defined on page 281 of Hardy and Wright. It is the largest square of nodes contained in the partition's Ferrers graph. Function durfee () returns the side of the Durfee square which Andrews denotes $d(\lambda)$. It is equivalent to R idiom function (a) \{sum (a>=1:length (a)) \}, but faster.

Value

Returns either a partition in standard form, or a matrix whose columns are partitions in standard form.

Note

If argument x is not nonincreasing, all bets are off: these functions will not work and will silently return garbage. Caveat emptor! (output from blockparts () is not necessarily non-increasing)

Author(s)

Robin K. S. Hankin

Examples

```
parts(5)
conjugate(parts(5))
restrictedparts(6,4)
conjugate(restrictedparts(6,4))
durfee(10:1)
```

nextpart Next partition

Description

Given a partition, return the "next" one; or determine whether it is the last one.

Usage

```
    nextpart(part, check=TRUE)
islastpart(part)
    firstpart(n)
        nextdiffpart(part, check=TRUE)
islastdiffpart(part)
    firstdiffpart(n)
        nextrestrictedpart(part, check=TRUE)
islastrestrictedpart(part)
    firstrestrictedpart(n, m, include.zero=TRUE)
        nextblockpart(part, f, n=sum(part), include.fewer=FALSE, check=TRUE)
islastblockpart(part, f, n=NULL , include.fewer=FALSE)
    firstblockpart( f, n=NULL , include.fewer=FALSE)
    nextcomposition(comp, restricted, include.zero=TRUE, check=TRUE)
islastcomposition(comp, restricted, include.zero=TRUE)
    firstcomposition(n, m=NULL , include.zero=TRUE)
```


Arguments

```
part, comp A partition or composition
check Boolean, with default TRUE meaning to carry out various safety checks; the
    next () functions use C calls which might crash the session with some inputs
f, n, include.fewer, m, include.zero
```

 Other arguments as per the vectorized version
 restricted Infunctionnextcomposition() and islastcomposition(), Boolean,
 with TRUE meaning to consider compositions of fixed length [eg, to iterate
 through the columns of compositions \((6,3)]\), and FALSE meaning to con-
 sider compositions of any length [eg to iterate through the columns of compositions (6)]

Details

These functions are intended to enumerate partitions one at a time, eliminating the need to store a huge matrix. This is useful for optimization over large domains and makes it possible to investigate larger partitions than is possible with the vectorized codes.

The idea is to use a first... () function to generate the first partition, then iterate using a next...() function, stopping when the islast...() function returns TRUE.
An example is given below, in which the "scrabble" problem is solved; note the small size of the sample space. More examples are given in the tests/aab. R file.

Note

Functions nextpart () and nextdiffpart () require a vector of the right length: they require and return a partition padded with zeros. Functions nextrestrictedpart () and nextblockpart () work with partitions of the specified length. Function nextcomposition () truncates any zeros at the end of the composition. This behaviour is inherited from the C code.
In functions nextcomposition() and firstcomposition(), argument include.zero is ignored if restricted is FALSE.

I must say that the performance of these functions is terrible; they are much much slower than their vectorized equivalents. The magnitude of the difference is much larger than I expected. Heigh ho. Frankly you would better off working directly in C.

Author(s)

Robin K. S. Hankin

See Also

parts

Examples

```
# Do the optimization in scrabble vignette, one partition at a time:
# (but with a smaller letter bag)
scrabble <- c(a=9, b=2 , c=2 , d=4, e=12, f=2, g=3)
f <- function(a) {prod(choose(scrabble,a))/choose(sum(scrabble), 7) }
bestsofar <- 0
a <- firstblockpart(scrabble,7)
while(!islastpart(a)) {
    jj <- f(a)
    if(jj>bestsofar){
        bestsofar <- jj
        bestpart <- a
    }
    a <- nextblockpart(a,scrabble)
}
```


Description

Given an integer, P() returns the number of additive partitions, Q() returns the number of unequal partitions, and $R()$ returns the number of restricted partitions. Function $S()$ returns the number of block partitions.

Usage

P(n, give = FALSE)
$Q(n$, give $=$ FALSE $)$
$R(m, n$, include.zero $=$ FALSE $)$
S(f, $\mathrm{n}=\mathrm{NULL}$, include.fewer = FALSE)

Arguments

n
m
give

Integer whose partition number is desired. In function $S()$, the default of NULL means to return the number of partitions of any size

In function $R()$, the order of the decomposition
include.zero In restrictedparts(), Boolean with default FALSE meaning to count only partitions of n into exactly m parts; and TRUE meaning to include partitions of n into at most m parts (because parts of zero are included)
include.fewer
In function blockparts (), Boolean with default FALSE meaning to return partitions into exactly n and TRUE meaning to return partitions into at most n
f In function $S()$, the stack vector

Details

Functions $P()$ and $Q()$ use Euler's recursion formula. Function $R()$ enumerates the partitions using Hindenburg's method (see Andrews) and counts them until the recursion bottoms out.
Function $S()$ finds the coefficient of x^{n} in the generating function $\prod_{i=1}^{L} \sum_{j=0}^{f_{i}} x^{j}$, where L is the length of f , using the polynom package.

All these functions return a double.

Note

Functions P() and Q () use unsigned long long integers, a type which is system-dependent. For me, P() works for n equal to or less than 416 , and $Q()$ works for n less than or equal to 792. YMMV; none of the methods test for overflow, so use with care!

Author(s)

Robin K. S. Hankin; S () is due to an anonymous JSS referee

Examples

```
P(10,give=TRUE)
Q(10,give=TRUE)
R(10,20,include.zero=FALSE)
R(10,20,include.zero=TRUE)
S(1:4,5)
```


Description

Given an integer, return a matrix whose columns enumerate various partitions.
Function parts() returns the unrestricted partitions; function diffparts() returns the unequal partitions; function restrictedparts () returns the restricted partitions; function blockparts() returns the partitions subject to specified maxima; function compositions () returns all compositions of the argument; and function allperms () returns all permutations.

Usage

```
parts(n)
```

diffparts(n)
perms(n)
restrictedparts(n, m, include.zero=TRUE, decreasing=TRUE)
blockparts(f, n=NULL, include.fewer=FALSE)
compositions(n , m=NULL, include.zero=TRUE)

Arguments

n
Integer to be partitioned. In function blockparts(), the default of NULL means to return all partitions of any size
m
In functions restrictedparts() and compositions(), the order of the partition
include.zero In functions restrictedparts() and compositions(), Boolean with default FALSE meaning to include only partitions of n into exactly m parts; and TRUE meaning to include partitions of n into at most m parts (because zero parts are included)
include.fewer
In function blockparts(), Boolean with default FALSE meaning to return vectors whose sum is exactly n and TRUE meaning to return partitions whose sum is at most n
decreasing Inrestrictedparts(), Boolean with default TRUE meaning to return partitions whose parts are in decreasing order and FALSE meaning to return partitions in lexicographical order, as appearing in Hindenburg's algorithm. Note that setting to decreasing to FALSE has the effect of making conjugate() return garbage
f In function blockparts (), a vector of strictly positive integers that gives the maximal number of blocks; see details

Details

- Function parts () uses the algorithm in Andrews. Function diffparts() uses a very similar algorithm that I have not seen elsewhere. These functions behave strangely if given an argument of zero.
- Function restrictedparts () uses the algorithm in Andrews, originally due to Hindenburg. For partitions into at most m parts, the same Hindenburg's algorithm is used but with a start vector of $c(r e p(0, m-1), n)$.
- Function blockparts () enumerates the compositions of an integer subject to a maximum criterion: given vector $y=\left(y_{1}, \ldots, y_{n}\right)$ all sets of $a=\left(a_{1}, \ldots, a_{n}\right)$ satisfying $\sum_{i=1}^{p} a_{i}=n$ subject to $0 \leq a_{i} \leq y_{i}$ for all i are given in lexicographical order. If argument y includes zero elements, these are treated consistently (ie a position with zero capacity).
If n takes its default value of NULL, then the restriction $\sum_{i=1}^{p} a_{i}=n$ is relaxed (so that the numbers may sum to anything). Note that these solutions are not necessarily in standard form, so functions durfee () and conjugate () may fail.
- Function compositions () returns all 2^{n-1} ways of partitioning an integer; thus $4+1+1$ is distinct from $1+4+1$ or $1+1+4$. This function is different from all the others in the package in that it is written in R; it is not clear that C would be any faster.

Note

These vectorized functions return a matrix whose columns are the partitions. If this matrix is too large, consider enumerating the partitions individually using the functionality documented in nextpart. Rd.
One commonly encountered idiom is blockparts (rep $(n, n), n$), which is equivalent to compositions (n, n) [Sloane's A001700].

The C code for allperms () is not written by me (grabbed from the internet with no clear author).

Author(s)

Robin K. S. Hankin

References

- G. E. Andrews. "The theory of partitions", Cambridge University Press, 1998
- R. K. S. Hankin 2006. "Additive integer partitions in R". Journal of Statistical Software, Volume 16, code snippet 1
- R. K. S. Hankin 2007. "Urn sampling without replacement: enumerative combinatorics in R". Journal of Statistical Software, Volume 17, code snippet 1
- R. K. S. Hankin 2007. "Set partitions in R". Journal of Statistical Software, Volume 23, code snippet 2
- N. J. A. Sloane, 2008, The On-Line Encyclopedia of Integer Sequences, www.research. att.com/~njas/sequences/, Sequence A001700

See Also

nextpart

Examples

```
parts(5)
diffparts(10)
perms(4)
restrictedparts(9,4)
restrictedparts(9,4,FALSE)
restrictedparts(9,4,decreasing=TRUE)
blockparts(1:4)
blockparts(1:4,3)
blockparts(1:4,3,include.fewer=TRUE)
blockparts(c(4,3,3,2),5) # Knuth's example, Fascicle 3a, p16
compositions(3)
```

print.partition Print methodsfor partition object

Description

A print method for partition objects and summary partition objects, including various configurable options

Usage

```
print.partition(x, mat = getOption("matrixlike"), h =
getOption("horiz"), ...)
print.summary.partition(x, ...)
```


Arguments

X
mat
h
. . . Further arguments provided for compatibility

Author(s)

Robin K. S. Hankin

Examples

print(parts(5))
summary (parts (7))

```
setparts Set partitions
```


Description

Enumeration of set partitions

Usage

setparts(x)

Arguments

x
If a vector of length 1 , the size of the set to be partitioned. If a vector of length greater than 1 , return all equivalence relations with equivalence classes with sizes of the elements of x. If a matrix, return all equivalence classes with sizes of the columns of x

Details

A partition of a set $S=\{1, \ldots, n\}$ is a family of sets T_{1}, \ldots, T_{k} satisfying

- $i \neq j \longrightarrow T_{i} \cap T_{j}=\emptyset$
- $\cup_{i=1}^{k} T_{k}=S$
- $T_{i} \neq \emptyset$ for $i=1, \ldots, k$

The induced equivalence relation has $i \sim j$ if and only if i and j belong to the same partition.
There are exactly fifteen ways to partition a set of four elements:

```
(1234)
(123)(4), (124)(3), (134)(2), (234)(1)
\((12)(34),(13)(24),(14)(23)\)
\((12)(3)(4),(13)(2)(4),(23)(1)(4),(24)(1)(3),(34)(1)(2)\)
\((1)(2)(3)(4)\)
```

Note that $(12)(3)(4)$ is the same partition as, for example, $(3)(4)(21)$ as the equivalence relation is the same.
Consider partitions of a set S of five elements (named $1,2,3,4,5$) with sizes $2,2,1$. These may be enumerated as follows:
$>u<-c(2,2,1)$

```
> setparts(u)
[1,] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3
[2,] 2 2 2 3 1 1 1 1 1 2 2 3 2 2 2 3 3 1 1 1
[3,] 3
[4,] 2 3 3 2 2 2 3 2 2 3 2 2 2 1 1 1 1 2 2 2 1
```


See how each column has two 1 s , two 2 s and one 3 . This is because the first and second classes have size two, and the third has size one.
The first partition, $\mathrm{x}=\mathrm{c}(1,2,3,2,1)$, is read "class 1 contains elements 1 and 5 (because the first and fifth element of x is 1); class 2 contains elements 2 and 4 (because the second and fourth element of x is 2); and class 3 contains element 3 (because the third element of x is 3)". Formally, class i has elements which ($x==u[i]$).

Value

Returns a matrix each of whose columns show a set partition; an object of class "partition". Type ?print. partition to see how to change the options for printing.

Author(s)

Luke G. West (C++) and Robin K. S. Hankin (R)

References

- R. K. S. Hankin 2006. Additive integer partitions in R. Journal of Statistical Software, Code Snippets 16(1)
- R. K. S. Hankin 2007. "Set partitions in R". Journal of Statistical Software, Volume 23, code snippet 2

See Also

```
parts, print.partition
```


Examples

```
setparts(4)
# all partitions of a set of 4 elements
setparts(c(3,3,2)) # all partitions of a set of 8 elements
    # into sets of sizes 3,3,2.
jj <- restrictedparts(5,3)
setparts(jj) # partitions of a set of 5 elements into
    # at most 3 sets
setparts(conjugate(jj)) # partitions of a set of 5 elements into
    # sets not exceeding 3 elements
```

```
setparts(diffparts(5)) # partitions of a set of 5 elements into
```

\# sets of different sizes
summary.partition Provides a summary of a partition

Description

Provides a summary of an object of class partition: usually the first and last few partitions (columns)

Usage

summary.partition(object, ...)

Arguments

object Partition
. . . Further arguments; see details section below

Details

The ellipsis arguments are used to pass how many columns at the start and the end of the matrix are selected; this defaults to 10 .

The function is designed to behave as expected: if there is an argument named " n ", then this is used. If there is no such argument, the first one is used.

Value

A summary object is a list, comprising three elements:
shortened Boolean, with TRUE meaning that the middle section of the matrix is ommitted, and FALSE meaning that the entire matrix is returned because n is too big
$\mathrm{n} \quad$ Number of columns to return at the start and the end of the matrix
out Matrix returned: just the first and last n columns (if shortened is TRUE), or the whole matrix if not

Author(s)

Robin K. S. Hankin
summary.partition

Examples

```
summary(parts(7))
summary(parts(11),3)
```


Index

```
*Topic math
    as.matrix.partition, 3
    conjugate,4
    nextpart,5
    P,7
    parts,9
    print.partition,11
    setparts,12
    summary.partition,14
*Topic package
    partitions-package,1
as.matrix.partition,3
as.partition
    (as.matrix.partition), 3
bin, 3
bintocomp(bin), 3
blockparts(parts),9
compositions(parts), }
comptobin(bin), 3
conjugate,4
diffparts(parts), 9
Durfee(conjugate),4
durfee(conjugate),4
firstblockpart(nextpart),5
firstcomposition(nextpart),5
firstdiffpart(nextpart),5
firstpart(nextpart),5
firstrestrictedpart(nextpart),5
islastblockpart(nextpart),5
islastcomposition(nextpart),5
islastdiffpart(nextpart),5
islastpart(nextpart),5
islastrestrictedpart(nextpart),5
nextblockpart(nextpart),5
```

nextcomposition(nextpart), 5
nextdiffpart(nextpart), 5
nextpart, 5, 10
nextrestrictedpart (nextpart), 5
P, 7
partitions(partitions-package), 1
partitions-package, 1
parts, 7, 9, 13
perms (parts), 9
print.partition, 11, 13
print.summary.partition
(print.partition), 11
Q (P), 7
R (P), 7
restrictedparts (parts), 9
S (P), 7
setparts, 12
summary.partition, 14
tobin(bin), 3
todec (bin), 3

