
Efficiency in an Algorithm for Finding Cliques
Leanne

Department of Mathematics,
University of Massachusetts Dartmouth

Lsilvia2@umassd.edu

Abstract

In an undirected graph, a clique is a subset
of vertices such that every two vertices are con-
nected by an edge; that is to say the clique itself
is a complete graph found within the graph. The
clique problem is classified as NP-Complete. As
the starting graph increases in number of vertices
and edges it becomes very difficult to find the an-
swer, the maximum clique, in polynomial time.

What is a Clique?

A clique is a set of vertices in a graph, such
that every vertex is connected to every other vertex
in the graph. In other words, it is a (sub)complete
graph.
In the below picture, the green points form a 5-
clique.

A maximal clique is not a subset of any other
clique. It is the maximum sized clique for those ver-
tices.

Both Orange and Green are Maximal Cliques,
while Orange is the Maximum Clique

The maximum clique is a maximal clique that
has maximum cardinality; it is the clique with the
largest number of vertices.

Protein structure prediction can be viewed as
a problem of finding cliques in a graph whose ver-
tices represent positions of molecules in the pro-
tein. By seeing a protein-protein interaction net-
work as cliques, or clusters of proteins that interact
with each other and don’t interact as frequently out-
side their cluster.

Methods

Generating a Graph
This code generates a graph on two con-

straints which allows me to specify the number of
points (vertices) the graph will contain and a maxi-
mum distance that if two points are within such dis-
tance are joined by an edge. The code randomly
places the points before applying the connections.

Finding the Maximum Cliques
The basis of my code, which is written in

Mathematica, is manipulating and creating lists.
I discovered Mathematica has its own command
to find the maximum clique, MaximumClique[G].
However, I have started testing the speed of my
code against that of mathematica’s command and
for the graphs that I have tested, my code runs sig-
nificantly faster.

The code requires two parts of information
from the graph being analyzed: a list of the de-
grees, and a list of the edges, ordered by the ver-
tex.

Data

Random Graph of 300 points,connecting if within
a distance of .1

For graphs that don’t include high amounts of
vertices with outrageous degrees, my code seems
to run in polynomial time.

My Method vs. Mathematica’s

MaximumClique[G] command

My Code Mathematica Size of Max. Clique
0.05242 2.795514 3
0.052284 2.913246 3
0.052315 4.556635 3
0.059131 2.911586 3
0.056061 4.33452 4
0.061157 4.956026 4

Table 1: 100 points, .1 distance

My code has yet to reach one second and
Mathematica’s has increased to over half a minute.

My Code Mathematica Size of Max. Clique
0.158542 27.006818 3
0.150284 33.837406 3
0.162106 27.534414 3
0.168909 47.2927 4
0.175829 35.271799 4
0.210005 42.222799 4

Table 2: 200 points, .1 distance

Although my code has doubled in time, it has
increased by a minuscule amount, while Mathe-
matica’s command is taking over four minutes.

My Code Mathematica Size of Max. Clique
0.382765 261.293623 4
0.367425 375.67082 4
0.384376 262.535695 4

Table 3: 300 points, .1 distance

In the following tables, Mathematica’s code
becomes very inefficient to return the Maximum
Clique.

My Code Mathematica Size of Max. Clique
0.806121 1810 unfinished 4
0.693635 no attempt 4
0.71146 1250 unfinished 4

Table 4: 400 points, .1 distance

My Code Mathematica Size of Max. Clique
1.342606 no attempt 4
1.236563 no attempt 4
1.253054 no attempt 4

Table 5: 500 points, .1 distance

My Code Mathematica Size of Max. Clique
1.99273 no attempt 4

2.262895 no attempt 4
2.623419 no attempt 4
2.314154 no attempt 5

Table 6: 600 points, .1 distance

My Code Mathematica Size of Max. Clique
11.205336 no attempt 5
14.895239 no attempt 5
18.801664 no attempt 5
18.891935 no attempt 5
22.461103 no attempt 5 Degree Range: 10-49

Table 7: 1000 points, .1 distance

This is a plot of the average time stamps for
graphs ranging from 100-1000 points

When comparing my time stamps against that
of Mathematica’s command, mine appears to ap-
pear almost linear and non-increasing. This shows
how much more dramatically Mathematica’s com-
mand takes for the graphs that i tested.

When the graphs I tested had all degrees
ranging very high, such as in the below table, nei-
ther code would produce an answer in a reason-
able amount of time.

Size of Degree
My Code Mathematica Clique Range

1589.13 unfinished no attempt not found 24-91
Table 8: 2000 points, .1 distance

Size of Degree
My Code Mathematica Clique Range

21.99 706.13 unfinished 4 3-32
Table 9: 2000 points, .05 distance

For a graph of 3,000 points, containing de-
grees from 0-14, my code took only 11.68 seconds
to find the maximum clique, 3. When the degree
range is increased to a range of 5-42 it took ap-
proximately 112 seconds, finding a 4-clique. Math-
ematica’s command would take an undetermined
amount of time.

For 50 points with degrees ranging from 11-
38 the code took 20 secs,a slim difference with
mathematica’s taking 24. Both codes found the
same 10-clique.

My code seems to run fastest when the de-
grees stay reasonable. For 4,000 points, degrees
of 0-6 took 5.37 seconds, mathematica’s command
was still unfinished at 2234. On a graph of 100
points, with degrees 4-25, .8 seconds (mathemat-
ica: 14.34). Degrees 12-46 took 114 seconds
(mathematica: 191).

Future Objectives
Refining my code, targeting more specific

graphs that correlate to finding cliques. Creating
a code to find all maximal cliques.

SIAM AN10, Society for Industrial and Applied Mathematics Annual Meeting, 12 - 16 July 2010, Pittsburgh, Pennsylvania


