
A General Framework for a Deniable Private Key

Chaotic Cryptosystem

Chris L. Bresten

May 14, 2009

Abstract

We propose a generalized framework for the construction of deniable

private key chaotic cryptosystems. This idea relies on the ergodic and

diffusive properties of 1-D chaotic maps, allowing us to construct nice

trapdoor functions. We provide a proof of concept based on the well

studied Logistic map. The resulting cryptosystem allows us to encrypt

one, two, or more messages into the same ciphertext with separate keys.

Each of these messages can be retrieved with their respective keys, whilst

yielding no information about the presence of alternative messages. This

is the heart of deniability in its true sense, the only defense against the

feared rubber hose attack.

1 Introduction

With the growing popularity of rubber-hose cryptanalysis techniques, it has
been called upon the community to respond with cryptosystems resistant to
these kinds of cryptanalysis. The holy grail of such solutions, though poorly
realized, is the deniable private key system. The ideal deniable private key sys-
tem would allow someone to encrypt multiple plaintexts into a single ciphertext,
with separate keys. In the event of a rubber-hose attack, the holder of the keys
can fork over an alternative key, yielding a plaintext that has been engineered
to divert or confuse the attacker from the real secrets.

1.1 Rubber-hose Cryptanalysis

Rubber-hose cryptanalysis refers to the use of physical or psychological violence
as a coercive force to extract a private key from the holder. As with many
non-classical attacks on information security, this one relies on what is often
the weakest link: users. Deniability tries to empower the user with the ability
to provide bogus, but plausible alternatives to the real secrets the attackers are
after.

1

1.2 Deniability - The ideal

The ideal deniable cryptosystem will allow one to seamlessly encode n plaintexts
into a single ciphertext with n separate, distinct keys. These plaintexts must be
retrievable with their respective keys, yielding absolutely no information about
the existence of other plaintexts. This ideal deniable cryptosystem must also
not guarantee that any such alternative messages exist. Given full knowledge
of the system, it must be impossible for an attacker to determine if he has been
given the only key, or one of many keys. Such a system should also be held to
the same standards all cryptosystems are held, or at least have the ability to
be streamlined with classical systems to ensure security. There is a difference
between overall security and security of the deniability. If the deniability is
secure then we know that one can not retrieve the alternative messages easier
once one has the key to one message, and that one is never given any clue as to
how many messages may be encoded into one ciphertext.

1.3 Chaotic Cryptosystems

In relatively recent years, many chaotic cryptosystems have been proposed.
Many of them insecure, and some truly spurious. Many were not developed by
cryptographers, but by physicists and signal processing people. Many make use
of a chaotic system as a synchronized entropy source. This, while intriguing,
is a naive idea, for many chaotic systems are not nearly as good at psudoran-
dom number generation as known seeded algorithms, there is often no reason
to choose a chaotic sequence over a standard seeded psudorandom number gen-
erator in this case.

Other systems make use of chaotic sequences as one way functions, some-
how incorporating the plaintext into initial conditions, encoding the message by
passing it through some chaotic system or another. [1]

Our system uses both of these ideas, but is at core mostly of the one-way
function variety. It may be useful to look at it as an improvement upon the
Baptista ergodic cipher [1].

There are even key exchange algorithms based on chaotic dynamics, hash al-
gorithms, all sorts of things. Overall as a field chaotic cryptography seems very
young. There are many issues with using chaos to fill the needs of cryptosys-
tems, such as: computational expense, floating point operations and cipher-
texts(expensive and large), inability to hold up to known plaintext and known
ciphertext attacks, many have been created with a general lack of foresight
about typical cryptanalysis(like one time pad attacks [3]).

We aim to use the full potential of chaotic systems to do what seemingly
can not be done with classical integer based systems: Deniability.

2

2 A generalized framework for a Deniable Chaotic

Cryptosystem

The system proposed makes use of chaotic sequences as one way functions.
Though it is worth noting that synchronized entropy sources are probably nec-
essary in any secure implementation. To construct our system we require a 1-D
chaotic sequence with the following properties:

• Invertible in the sense that we can create a tree of possible trajectories to
a given state with relative ease

• Includes a parameter that continuously affects it’s behavior, but does not
significantly affect the distribution of the attractor on an interval of useful
size, so that the parameter can not be intelligently guessed by statistical
analysis.

• ergodicity

• Maps itself on interval of the real or complex numbers.

2.1 Encryption

In the simplest case, pre-encoding is done by mapping our plaintext to a random
value of the system’s attractor, we will call this xn. The system is reversed,
yielding a tree with kn leaves for n iterations on a system with k possible
xn−1 for a given xn. A random x0 is chosen from the tree, making our xn

the plaintext and x0 the ciphertext. The private key consists of n and the
parameters necessary to reconstruct the system.

For a a deniable system we take the x0 found above and make sure that
with a separate set of parameters it will step forward to values that encode a
separate message. We have to solve for a congruency like, so that this common
x0 will bring us to specified intervals of the domain for various secret keys, the
interval where the system lands will decode to the original data. This will be
expanded upon later.

Some important things must be taken into consideration if one wants to even
begin talking about security of such a system:

• The plaintext must be mapped randomly to the attractor of the system,
making the plaintext(if one discovers the parameters to the sequence) in-
distinguishable from it’s surroundings. This is camouflage/steganography.

• Choices on the tree must be random.

• n must not be constant, it must change randomly from bit to bit. Ex-
changed not as an integer, but as the seeds to a psudorandom number
generator.

3

• Increasing the number of plaintexts should not compromise the random-
ness of selection for ciphertexts. It should not significantly decrease the
size of the ciphertext space.

• a good source of entropy is always necessary

• High digit precision arithmetic is a must

• the key, of course, must be exchanged securely

• The source of chaos must have parameters, preferably a few, to which it’s
behavior is very sensitive to, but does not affect the attractors statisti-
cal properties. This can prevent intelligent guessing of the parameter by
statistical analysis of the ciphertext.

2.2 Decryption

Decryption consists of taking the ciphertext and using it as initial conditions
for the system declared in the private key, choosing the values it takes at the
discrete time steps specified in the private key. These values are then decoded
back into binary with a common padding scheme.

3 Our proof of concept

Now to show you how this can be put together into something that works. Here
we present a proof of concept architecture that follows the previously described
framework, creating a truly deniable cryptosystem. We choose the logistic map
as our chaos source, this choice is based largely on ease, it is the simplest
case. The logistic map is well studied and understood by the community, so
it is the easiest to work with. It is by no means ideal, but it fits the bill.
This implementation is functional but sloppy. It employs several techniques
for confounding cryptanalysis, but it is inherently weakened by it’s sub-prime
choice of a chaos source.

3.1 The Logistic Map

The discrete logistic map takes on the form of the quadratic:

xn+1 = xn ∗ (1 − xn) ∗ r

r is the parameter, in our case it’s interval will be [3.9, 4]. This region lacks
bands of stability, so it is thoroughly ergodic.

3.2 Inverse logistic map

Say if we want to construct a logistic map sequence that will land on c after n

iterations. To do this we have to invert the logistic map. This can be done by

4

solving for the roots of:

0 = xn+1 − xn ∗ (1 − xn) ∗ r

the closed form solutions have been determined(in previous research[4]) to
be:

xl

n−1 =
1

2

r ∗ (r +
√

r2 − 4 ∗ r ∗ xn

(1)

xr

n−1 =
1

2

r ∗ (r −
√

r2 − 4 ∗ r ∗ xn

(2)

The left and right roots, respectively. Some roots are complex. For our purposes
these are ignored. Having to ignore these is not ideal, we would prefer a system
that always inverted to a predictable number of values, but this is a proof of
concept.

Here is a nice image of the first seven iterations of the inverse logistic map
for some arbitrary initial conditions for r = 3.934233:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

x

n

inverse logisitc map

The left roots are red and the right roots are green. after 7 iterations we
have 82 possible trajectories out of a possible 27 = 128, this is because there
are some complex roots.

Now that we can invert the logistic map, we have the basic tools needed to
construct a working deniable cryptosystem.

3.3 Pre-encoding

The validity of this proof of concept is very dependent on the way we pre-encode
the plaintext. To convert our raw data to something we can use we do a simple
mapping of binary to [0, 1], like:

1 → xn ∈ [.5, 1] (3)

0 → xn ∈ [0, .5] (4)

5

In order to randomly choose a proper xn, we must use a random value from the
attractor of the system we are using for our chaos source. In our PoC case we
generate entropy by recording many values the logistic map takes for various
initial conditions with our private r, and choose one in the proper interval
randomly. This way the pre-encoded data blends right in with the natural
values of the system, because it is a natural value the attractor takes. This
helps confound cryptanalysis, making it harder to spot the message when its in
front of your face. If we simply used uniformly distributed random xn we would
be compromising the security of the system in a very big way, these values would
be easy to spot statistically.

It is important that we use such a raw binary encoding. It allows for us to
have a the largest number of pre-encoded plaintexts to work with for a given
plaintext. The fact that the attractor we are working with spends about an equal
amount of time in both of these intervals will become important for constructing
our deniable PoC.

3.4 Putting it together: Encryption

For simplicity, we are going to break this down so at first we will go through the
process of encrypting only one bit. This will make it much easier to understand
the overall process, by separating some messiness we incorporated to confound
cryptanalysis. This basic example covers the encoding of two one bit messages
but could easily extend to k messages with some strings attached.

• Select secret keys r1 and r2, as well as secret seeds to our random number
generator to generate our n values

• Select our n1 and n2, each is chosen separately using separate psudoran-
dom number generators. We will call our corresponding binary plaintext
m1 and m2

• We pre-encode the m1 binary message to xn1
as above. m1 is called the

”king bit”

• xn1
is provided as the initial conditions to the inverse logistic map and

the tree is constructed, giving us many x0, we choose a random one.

• if x0 steps forward to n2 with r2 to the interval corresponding to m2 ([.5, 1]
for 1 or [0, .5] for 0)then we are done for this bit. If it does not, we try
another random x0 from the previous step.

• now we have x0, which is our ciphertext.

the secret key consists of our n values and r. To decrypt we simply step from
x0 to xn1

or xn2
with r1 or r2 depending on which message we want.

6

3.5 Commentary

The values for our n1 and n2 are chosen randomly by separate seeded psudo-
random number generators. The initial conditions to these are included in their
respective secret keys so the receiver can reproduce the sequence to find the n

values needed for decryption. The effect of randomizing the n values confounds
an attacker who knows the proper r, or is simply looking for the proper r. This
effectively weaves the message into the sea of chaos, retrievable if you know
exactly where to look, but if you don’t its like brute forcing a one time pad,
all possible combinations are equally valid. There is no real limit to how many
messages we can encrypt at once, it doesn’t effect the running time considerably
since it is easy to solve for this congruency. In our implementation the message
for which we solve the tree is called the king bit, for security reasons this is
chosen randomly bit by bit.

In order to retrieve the plaintext without the key one will have to guess the
proper r and the proper seed for the random number generator. If we have
double precision there is 1013 or so valid values for r. For each of these, there
would be another 1014 or so valid values for the n generator seed. This translates
to 1027 possible keys to retrieve both messages, if you can spot them when you
see them. the equivalent key size in bits would be log2(1027) ≈ 89.6 with quad
precision we would be dealing with something more like a 200 bit key.

High digit precision is necessary to use values of n of reasonable size. And
n of large size are necessary for small perturbations in r to manifest properly,
assuring key space size.

It is also worth noting that with a little more trickery the secondary plain-
texts could use a separate r. If we use the same r, then an attacker who knows
one key has greatly narrowed his search for secondary messages. Though the
attacker may now know proper r, he still has to guess the parameters for the
n generating sequence. If pre-encoding is done properly, and we use the above
method for choosing our n, it should be nearly impossible to pick the message
out without exhausting the parameter space for the n generating sequence. By
ergodicity, any arbitrary message could be picked out of the static, similar to
brute forcing of a one-time pad.

It would require just a little extra computational time to use separate r for
our deniable messages. This would greatly improve the security of this as a
deniable scheme.

3.6 Security

The security of this system relies largely on the secrecy of r and the stegano-
graphic technique of varried n. Any real implementation should stack this sys-
tem with a classical private key system like AES to ensure security. It is worth
noting that the ciphertext will always appear as randomly selected values from
the chaotic attractor. For a given cleartext and key there is an infinite number
of corresponding ciphertexts. It is also worth noting that varrying the king bit,
bit by bit, is a good thing. It makes it much less possible to distinguish one

7

message as primary or secondary, etc. If one was to know the entrophy by which
we choose our xn they could possibly know if the message they have been given
is one of many or alone.

3.7 Drawbacks

This algorithm is overall very slow and inefficient, ciphertext will take up a
lot of space compared to the raw plaintext. Compression algorithms should
be used on the ciphertext to help this problem. Parallel computing and high
performance compiled languages should make it of useful speed for encrypting
files and the like. It also requires high digit computation to use n values of a
more reasonable range.

3.8 The Future

An implementation with a fast compiled language and high digit computation
is in order. Such an implemention should include a classical system first, maybe
another bitwise stream cipher depending on the application. It is also worth
noting that this stream cipher would be very well suited for intense parrellel
computation using GPUs. A scheme using a GPU to encrypt/decrypt a hard
drive with this may be of useable speed.

An implementation to encrypt files will require a random padding scheme to
make the pre-encoded cleartexts to be of equal length. Then it will be hit with
a classical private key cipher and subsequently the deniable cipher and last a
compression algorithm. Overall this would make for a block cipher.

4 Code Documentation

The PoC code included can be invoked like:

ciphertext = encrypt6(’message1’,’key1’,’message2’,’key2’,....,’messageN’,’keyN’)

messageN = decrypt3(ciphertext,’keyN’)

The keys must be ascii of length 3 or greater. This is hashed to the param-
eters r and the parameters for the n generating sequence. messages MUST be
of the same length. or, at least the first message must be the shortest for the
code to run at all.

It is very slow on matlab.

5 Acknowledgements

We hope this paper serves to help others produce deniable cryptosystems of
viable security and computational cost.

Thank you to Jae-Hun Jung, and Gary Davis, Saeja Kim, and Daniel Higgs
for motivation and helpful discussion that helped make this possible.

8

References

[1] M.S. Baptista, Cryptography with chaos. Physics letters A

[2] J.M. Amig a, , L. Kocarev b , J. Szczepanski. Theory and Practice of
chaotic cryptography. Physics Letters A

[3] G. lvarez , F. Montoya, M. Romera, G. Pastor. Cryptanalysis of an ergodic
chaotic cipher. Physics Letters A

[4] C. Bresten, Jae-Hun Jung A study on the numerical convergence of the
discrete logistic map. Commun Nonlinear Sci Numer Simulat

9

