
Asymptotic Geometric Analysis:

An Overview

V.D. Milman

Tel Aviv University

Rome, 2007



I. The Subject of Asymptotic

Geometric Analysis

II. Geometrization of Probability

III. Concentration Phenomenon:

Isomorphic Form of Isoperimetric

Problems



I. The Subject of

Asymptotic Geometric Analysis

Some History

The framework of the subject we will discuss

involves very high dimensional spaces (normed

spaces, convex bodies) and accompanying

asymptotic (by increasing dimension) phenomena.

The starting point was open problems of

Geometric FA (from the 60s and 70s). This

development naturally led to the Asymptotic

Theory of Finite Dim. spaces (in 80s and 90s).

During this period, the problems and methods

of Classical Convexity were absorbed by

Asymptotic Theory (including geometric

inequalites and many geometric, i.e. “isometric”,

as opposed to “isomorphic” problems).
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As an outcome, we derived a new theory:

Asymptotic Geometric Analysis.

One of the most important points of already

the first stage is a change in intuition about

the behavior of high-dimensional spaces. In-

stead of the diversity expected in high dimen-

sions and chaotic behavior, we observe a uni-

fied behavior with very little diversity.

3



Unusual intuition of high dimension:

First simple examples

VolDn : n = 1 Vol = 2
= 2 = π

= 3 = 4
3π

VolD6 > VolD5 > VolD4 > VolD3

But VolDn =

(
cn√
n

)n
where cn →

√
2πe.

So, it is “very difficult” to find points of Dn

inside Cn = [−1,1]n (i.e. probability of random

point of Cn to be in Dn is exponentially small).
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(1,1, . . . ,1) , ‖(1, . . . ,1)‖ =
√
n

Dn ⊂ Cn, emphasizing the geometry

of Cn.

or again Dn ⊂ Cn but

emphasizing geometry of Dn
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or even more reflecting

that Cn has 2n such

direction–mustaches

So n-dim. cube looks “similar” to
√
nDn from

the volume distribution point of view.

Some precise facts, which sounded very sur-

prizing at the end of the ’70s became natural

and intuitive from this (correct) picture.
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Now a precise fact (Figiel-Lindenstrauss-Milman,

’76/’77):

Fix small ε > 0; a “typical” projection PEC
n

on a subspace E, dimE = [εn] := k,

is ∼ √
ε-isometric to a euclidean ball RnDk for

radius Rn ∼
√

2
π

√
n:

(1 −√
ε)RnDk ⊂ PEC

n ⊂ (1 +
√
ε)RnDk

[if aT ⊂ K ⊂ bT , we say that distance

d(K, T) ≤ b/a].
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Also, even almost full dimensional projections

look euclidean:

Kashin (’77). For any 1
2 < λ < 1, ∃C(λ),

s.t. for a typical projection PE, for

k = dimE = [λn]

1

C(λ)
RnDk ⊂ PEC

n ⊂ C(λ)RnDk .
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Unified behaviour

First example: (from: M., 71; M.-Schechtman,

97; M., 2000)

K ⊂ (Rn, | · |) – a subset; D – the unit eucl. ball

D(E) = D ∩ E, for a subspace E.

Let d(K) – diameter of K, PEK – orthoproj.

of K onto subspace E ↪→ R
n.

Let D`(K) := E(d(PEK) | dimE = `)

and mean width

D1(K) := w(K) =
∫

Sn−1
w(K, u)dσ(u)

w(K, u) – width in the direction u ∈ Sn−1:

w(K, u) = sup
{
(u, x) | x ∈ K

}
−inf

{
(u, x) | x ∈ K

}

9



Define

k∗ = n

(
w(K)

d(K)

)2

(Note that w(D)/d(K) ≥ 1/
√
n.)

Then: ∃c > 0 and C s.t. ∀n ∀K ⊂ R
n

for k∗ ≤ ` ≤ n,

c

√
`

n
d(K) ≤ D`(K) ≤ C

√
`

n
d(K)

and

cw(K) ≤ D`(K) ≤ Cw(K)

for 1 ≤ ` ≤ k∗ (stabilization). Actually, the

same is true for a “typical” projection PEK.

k∗ – critical value

We observe a phase transition type behaviour

(it is a typical behaviour).
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Additional information:

The only reason for stabilization is that the

“typical” projection PEK for dimE . ε2k∗ is an

ε-net of a euclidean ball (of radius w(K)/2).

If K convex, K = −K, ‖x‖K – K-norm, then

the “typical” projection is an almost euclidean

ball

PEK ∼ w(K)

2
D(E) .
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Next example; Corresponding global problem.

(from: Bourgain-Lindenstrauss-M., 87;

M.-Schechtman, 97; M., 2000).

Problem: Approximate euclidean ball rD by

averaging rotations of K: Kt = 1
t

∑t
i=1 uiK,

ui ∈ O(n).

We will discuss the problem in the language

of Funct. Analysis instead of the language of

Geometry.

Let X = (Rn, ‖ · ‖, | · |), denote

b := ‖Id : `n2 → X‖, and M =

∫

Sn−1
‖x||dσ(x) .

Consider a new averaging norm

‖|x|‖t =
1

t

t∑

1

‖uix‖, ui ∈ O(n)

and the space Xt = (Rn, ‖| · |‖t, | · |).
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Then with a very high probability (by selection

ui)

bt := ‖Id : `n2 −→ Xt‖ ∼ 1√
t
‖Id : `n2 → X‖

for

t < (b/M)2 = ( sup
|x|=1

‖x‖/Ex∈Sn−1‖x‖)2 := t0

and

‖|x|‖t ∼M · |x| for t & t0 .

Again phase transition,

stabilization after critical value.

Reason for stabilization:

averaging norm becomes

euclidean.

Note: In the “global” process: “the best”

possibility is h the same as a “typical”

selection.
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Other very general facts

Dvoretzky-type theorems

We already noted that typical projection PEK

of centrally sym. convex body K on subspace

E of dim. k∗ is close to a euclidean ball D. Let

us put some facts in precise form (and in the

dual form, i.e. for “typical” sections).

Theorem (Milman, 1971).

Let X = (Rn, ‖ · ‖, | · |), ‖ · ‖ – some norm,

| · | – euclidean norm, Sn−1 = {x | |x| = 1},
b = maxx ‖x‖/|x| and M (= ESn−1(‖x‖)) as

before.

Let k(X) := k = [cn(M/b)2], c – universal

constant. Then,

Prob

{
E ∈ Gn,k satisfies

1
2M |x| ≤ ‖x‖ ≤ 2M |x|

for ∀x ∈ E

}
≥ 1 − e−k.

(i.e. with high probability k-dim. subspaces are

∼ euclidean).
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Remarks. 1. Of course, we may write 1 + ε,

ε > 0, instead of 2, by reducing k.

2. Always b ≤
√

2nM , and there is | · | s.t.

b ≤ c
√

n
lognM which would imply k & logn.

3. However, k (or k∗ for random projections)

may be very small (∼ logn, say), and it is not

useful for applications. At the same time, for

some universal constant c > 0

k(X) · k∗(X) ≥ cn

(Figiel, Lindenstrauss, Milman – 1977).
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Using two “dual” operations consequently

changes the picture.

The first example of this nature:

“Quotient of a Subspace Theorem” (Mil-

man, 1985): Let 1/2 ≤ λ < 1 and X − n-dim.

normed space. Then ∃ subspaces F ↪→ E ↪→ X

s.t. for Y = E/F

k = dimY ≥ λn , d(Y, `k2) ≤ c
| log(1 − λ)|

1 − λ

This is already a structural fact. One may start

to feel how we can approach dealing with an

arbitrary convex body and normed space.
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Concept of “Concentration”

Rough Idea (which we will develop later):

A good (say, 1-Lip) function on high-dimensional

objects cannot be distinguished from a con-

stant in “polynomial time”.

Example: Sn+1 ⊂ Rn+2; f(x) ∈ C(Sn+1) and

1-Lip. Select random points {xi}N1 ⊂ Sn+1.

Fix ε > 0. Then

Prob.{|f(xi)−f(xj)| < ε, ∀i, j} > 1−Ne−ε2n/8 .

So, say, for N ∼ nt we don’t observe osc. of

f(x) above level ε & C
√

logn
n .
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For spaces (Xn, ρn, µn) with metric (to define

a “good” class) and probability measures µn,

of increasing “dim” n, this is a typical

observation, called “concentration phenomenon”.

Technically (and ideologically) this phenomenon

is responsible for changing our intuition; it

compensates exponential increase in covering

(entropy) and “suppresses” an expected

diversity within high dim.

This should be explained with some examples

and I will return to this later.
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Simplicity (versus Complexity)

Fix a family of procedures (= steps) we call

simple and a family of objects (or systems)

which are considered to be simple ones.

Then, we measure simplicity of (apparently

very complex) objects by a (minimal) num-

ber of simple steps which brings the object

we study to a simple object.

It is the opposite philosophy to the

standard understanding of complexity.

But procedures are not reversible and

“small simplicity” may co-exist with

huge complexity.

Examples
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Symmetrizations:

Steiner symmetrization

Rn ⊃ K – convex, h – hyperplane

SthK – one step of Steiner sym.
N∏

h=1
SthiK := KN

Fix some c > 1.

What is the smallest N s.t. for ∀K ⊂ R
n one

may find {hi}N1 such that ∃ ellipsoid E and

(∗) E ⊂ KN ⊂ c · E ?

Hadwiger (∼ 55): N . (c1 · n)n/2

Bourgain–Lindenstrauss–Milman (∼1987):

N . c1n logn (for some c ∼ 3)

Klartag–Milman (2003):

N =
3

2
n enough .
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Actually: ∀ε > 0 ∃c(ε) instead of c in (∗) s.t.

N ≤ (1 + ε)n

(and, for some K, at least n − c1 logn is nec-

essary).

If D is the standard euclidean ball then addi-

tional n−1 sym. turns E to r.D and altogether

N ≤ (2 + ε)n is enough.

(Note: isomorphic answer)

So, the “simplicity” of any convex K (to derive

an ellipsoid by using Steiner sym. as elemen-

tary steps) is around the same as the simplicity

of an ellipsoid with respect to a euclidean ball.
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Explicit versus random; derandomization

Simplicity/complexity may be measured also

through comparing explicit constructions (of

interesting features of high dimensionality) with

random ones.

More precisely, we are interested in a number

of explicit steps and a number of randomly

selected steps needed to solve a specific

problem.

The reason for such an approch is the following:
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Most (all?) remarkable structures we

discovered in high-dimensional convex bodies

are “not visible”.

We prove their existence “with very high

probability” but we don’t know explicit

constructions which lead to these structures

(and what is “explicit”?) or even just

algorithms to recover them.

One such test-example is `N1 (cross-polytope

which is the unit ball of `N1 ).
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Let 0 < c,C, C1, . . . be universal constants.

Figiel-Lindenstrauss-Milman (1976 and 1977)

∃ε◦ s.t. ∀ ε, ε◦ > ε > 0, ∀N ,

∃ subspace E ↪→ `N1 , dimE = n ≥ cε2N

and dist(E, `n2) ≤ 1 + ε

(i.e. for some r > 0, r · |x| ≤ ‖x‖ ≤ (1+ ε)r · |x|)

— · — · —

Kashin (1977)

∀λ, 1

2
< λ < 1,

∃E ↪→ `N1 , dimE = n ≥ λN

and dist(E, `n2) ≤ C(λ).

— · — · —
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Examples of partially explicitly (and partially

randomly) solved problems.

(i) We already discussed that t ∼ (b/M)2

rotations {ui}t1 are needed (M.-Sch.) and

also sufficient (BLM) to approximate the

euclidean norm

|x| ∼ 1

t

t∑

1

‖uix‖

(and random {ui}t1 are OK with high prob-

ability).

However: just 4 log2 b/M + C random

vi ∈ O(n) is enough and then explicit (short)

construction brings the same result.

[Artstein-M.2006]

(ii) From Klartag (2002): 5 selections of or-

thogonal basis enough to approx. eucl.

ball using Minkowski symmetrizations. But

only 1 selection is random, and log∗ n selec-

tions are enough to achieve approximation

explicitly (using very simple steps).

25



II. Geometrization of Probability

The goal of these talks is directed more to the

next stage of the theory (as I see it).

Extension of the category of Convex Bodies

to the category of log-concave functions

(measures)

Definitions. Consider dµ = fdx, f ≥ 0 µ is

log-concave iff ∀A,B ⊂ Rn and 0 < λ < 1

µ
(
λA+ (1 − λ)B

)
≥ µ(A)λµ(B)1−λ

Very important example: (i) µ(K) = VolK

(by Brunn-Minkowski theorem)

(ii) µK(A) = Vol(K∩A)
VolK , K-convex.

(iii) Marginals of Volume; ProjE µ, E ↪→ R
n,

with the density ProjE f =
∫
x+E⊥ f(y)dy.
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Function f(x) ≥ 0 is called log-concave if log f

is concave, i.e. f(x) = e−ϕ(x) and ϕ is convex.

Connection (C. Borell): Let Suppµ not

belong to any affine hyperplane. Then µ is

log-concave iff µ is abs. continuous on Suppµ

and the density f is a log-concave function.

More examples: e−|x|; 1
(
√

2π)n
e−|x|2/2; e−‖x‖p/p,

for any norm and 1 ≤ p < ∞.
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Log-concavity was used in Convexity Theory

already from the ’50s (Henstock–MacBeath)

and later, say, Prékopa–Leindler’s extension of

Brunn–Minkowsky inequality, or the use of log-

concave functions to study volume of sections

of `np by Meyer–Pajor. But a purely geometric

study of log-concavity waited until the end of

the ’80s, and was initiated by K. Ball, with the

study of isotropicity of such measures and its

connection with isotropicity of convex bodies.
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Recently, it was observed that asymptotic

theory of high-dim. convexity is extended to

the much larger category of log-concave

measures. In this extension we identify K with

the measure

µK := Vol|K (i.e. µ(A) = Vol(A ∩K)).

Three features characterize this extension.
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(i) On the one hand, important geometric

inequalities (and other kinds of geometric

statements) are interpreted, extended and

proved for log-concave measures.

(ii) On the other hand, some typical probabilistic

results (and thinking) are interpreted and

proved in a geometric framework.

(iii) And most importantly, an extension of the

geometric approach to the log-concave

category is needed to solve some central

problems of a purely geometric nature.

Examples of results to confirm this picture.
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(i) Functional form of some geometric

inequalities.

Prékopa–Leindler inequality (functional version

of Brunn–Minkowski inequality)

We introduce first sup-convolution which we

call

Asplund product:

(f ? g)(x) = Sup
x1+x2=x

f(x1)g(x2).

Example: 1K ? 1T = 1K+T .

λ-homothety for function is

(λ · f)(x) := fλ
(
x

λ

)
, λ > 0

(So f ? f = 2 · f)
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Let us start with the very important and beautiful

Brunn-Minkowski inequality: For A,B ⊂ R
n

(and all involved sets are measurable)

Vol(A+B)1/n ≥ (VolA)1/n + (VolB)1/n

In multiplicative, dimension-free form

Vol
(
λA+ (1 − λ)B

)
≥ (VolA)λ · (VolB)1−λ

for 0 < λ < 1.

Then the functional analogue of Brunn–Minkowski

is exactly Prékopa–Leindler inequality:

For f, g : Rn → [0,∞), 0 < λ < 1

∫
(λ · f) ?

(
(1 − λ) · g

)
≥
( ∫

f

)λ
·
( ∫

g

)1−λ

Also “isomorphic” inequalities have their

functional form. E.g. geometric statement:
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Reverse Brunn–Minkowski (Milman, ’85):

∃C s.t. for any convex, sym., K,P ⊂ R
n, there

are TK, TP ∈ SLn such that if K̃ = TK(K),

P̃ = TP (P), then

Vol(K̃ + P̃)
1
n < C

[
Vol(K̃)

1
n + Vol(P̃ )

1
n

]

where TK depends solely on K and TP solely

on P .

Its functional analogue (Klartag-Milman, ’05):

For any even log-concave f, g : R
n → (0,∞)

there are Tf , Tg ∈ SLn, s.t. f̃ = f ◦Tf , g̃ = g◦Tg
satisfy

[∫
f̃ ? g̃

]1
n
< C

[( ∫
f̃

)1
n
+

( ∫
g̃

)1
n
]

where Tf depends solely on f and Tg solely on g

(and C is, as before, a universal constant).
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Notion of Polarity;

functional version of Santaló inequality

Let K ⊂ Rn, convex, 0 ∈ K

K◦ :=
{
x ∈ R

n : (x, y) ≤ 1 ∀ y ∈ K
}

[ FA interpretation: If K = −K, ‖x‖K – Minkowski

functional, i.e. K is the unit ball of X = (Rn, ‖ · ‖K).

Then X∗ = (Rn, ‖ · ‖∗K) has K◦ its unit ball.]

Let D be the unit euclidean ball.

Blaschke–Santaló inequality

Let K = −K, then

|K| · |K◦| ≤ |D|2

(max. achieved on K := D).
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Problem: What is min |K|·|K◦| (Mahler, ∼’39)?

Asymptotic answer [Bourgain-Milman, 1985]:

∃c > 0 universal s.t.

c ≤
(
|K| · |K◦|

|D|2

)1/n

.

For general convex K: ∃x0 s.t. for K̂ = K−x0

|K̂| · |K̂◦| ≤ |D|2

(minx |K| · |(K − x)◦| achieved for x0 called

Santaló point; then 0 is the barycenter

of (K − x0)
◦.)
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Now the functional version. We start with

Legendre transform

Lϕ(x) = sup
y∈Rn

[
(x, y) − ϕ(y)

]
.

If ϕ – convex and low semi-continuous →

LLϕ = ϕ.

Define polarity:

f◦ = e−L(− log f), i.e. − log f◦ = L(− log f),

or

f◦(x) = inf
y∈Rn

e−(x,y)

f(y)
.

Let LC(Rn) be the class of (all) upper semicon-

tinuous non-negative functions s.t. their logs

are concave (in short, “log-concave” functions.)

Then f ∈ LC(Rn) implies (f◦)◦ = f .

Examples:

11◦K = e−‖x‖K◦
(
e−‖x‖2K/2

)◦
= e−‖x‖2

K◦/2.
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Some elementary properties:

1. (f◦)◦ = f ,

2. if f ≤ g ⇒ f◦ ≥ g◦,

3. (f ? g)◦ = f◦ · g◦

(for log-concave functions (f · g)◦ = f◦ ? g◦)

4. (λ · f)◦ = (f◦)λ
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Theorem (Artstein, Klartag, Milman; 2005):

Let f : Rn → R+,
∫
f <∞. Then

(i) for some x0 and f̃(x) = f(x− x0),

∫
f̃ ·

∫
f̃◦ ≤ (2π)n . (∗)

For log-concave f , we may take x0 =
∫
xf
/ ∫

f .

[If f-even, x0 = 0 and (∗) was proved by K. Ball.]

(ii) minx0
∫
f̃ · ∫ f̃◦ = (2π)n iff f is a gaussian.

The standard geometric Santaló inquality for

convex bodies follows from (∗): apply (∗) to

f = e−‖x‖2K/2.

Then
∫
Rn f dx = cn|K| where cn = (2π)n/2/|D|.
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The generalization of Santaló’s inequality for

a log-concave class had as its main goal to

justify the notion of polarity. However, many

more inequalities of this kind follow. They are

interesting in themselves but demonstrate that

generalization of Santaló’s inequality does not

justify in itself that we deal with the correct

notion of duality.
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What should we call “duality”?

We start with the class Cvx(Rn) of all lower-

semi-continuous convex functions

{f : Rn → R ∪ {±∞}.

Theorem (Arstein-Avidan, Milman). Let

T : Cvx(Rn) → Cvx(Rn) (1–1 and onto)

satisfying

1. T · Tϕ = ϕ (for any ϕ ∈ Cvx(Rn));

2. ϕ ≤ ψ implies Tϕ ≥ Tψ.

Then T is essentially the Legendre transform L:

∃c0 ∈ R, v0 ∈ R
n, symmetric linear B ∈ GLn s.t.

(Tϕ)(x) = (Lϕ)(Bx+ v0) + (x, v0) + C0.
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Turn to the class LC(Rn).

What should be a duality transform for this

class (and does it exist in some natural sense)?

The corollary of the previous theorem is

Corollary (Artstein-Avidan; Milman). Let

T : LC(Rn) → LC(Rn) satisfy, ∀f ∈ LC(Rn)

1. T · Tf = f ;

2. f ≤ g implies Tf ≥ Tg.

Then ∃0 < c0 ∈ Rn, v0 ∈ Rn and the symmetric

operator B ∈ GLn s.t. T is defined by

(Tf)(x) = c0e
−(v0,x) inf

y

e−(Bx+v0,y)

f(y)
,

i.e. (Tf)(x) = c0e
−(v0,x)f◦(Bx+ v0).
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The Concept of Duality

Definition. Let S be a set of functions defined

on Rn. We say that a transform T : S → S

(onto, 1–1) generates a duality if

1. ∀f ∈ S, T · Tf = f ;

2. ∀f, g ∈ S, f ≤ g implies Tf ≥ Tg.

The above theorem and corollary describe all

existing dualities on classes Cvx(Rn) and LC(Rn).
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A recent result by Böröczky–Schneider implies

the same kind of characterization for the case

of the family of all compact convex bodies with

0 in their interiors (i.e. the standard duality

is, essentially, the only existing duality for the

class of compact convex bodies).

Our method gives another proof of this and

also provides the same result for the class of

convex bodies containing 0 and not necessarily

bounded. The duality for the case of the family

of norms on Rn is also characterized in the

same way, which follows from joining Gruber’s

(1992) and Böröczky–Schnieder’s results (the

whole weight of the proof lies within Gruber’s

paper, but it was written and developed for a

different problem).
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Another example which demonstrates the level

of non-triviality of formulas which may be

derived from a simple starting point.

Let s > 0:

Conc+s (Rn) is the family of all bounded s-concave

functions f : Rn → R+ (i.e. f1/s is concave on

its convex support) and s.t. f(0) > 0.

The importance of these classes in Convex

Geometry is in the fact that, for s an integer,

they are marginals of uniform distributions

(Volumes) on convex bodies.
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We define, in [Artstein-Klartag-Milman], a du-

ality for this class by

Lsf = inf
y:f(y)>0

(1 − (x, y))s+
f(y)

.

Theorem (Artstein–Milman). Let

T : Conc+s (Rn) → Conc+s (Rn), 1–1, onto

1. T · Tf = f ;

2. f ≤ g implies Tf ≥ TG.

Then, there exists a constant C0 ∈ R and an

invertible symmetric linear transformation

B ∈ GLn such that

(Tf)(x) = C0 inf
(y:f(By)>0)

(1 − 〈x, y〉)s+
f(By)

.
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Return to the Functional version of

Santaló’s inequality.

Also the reverse inequality is true in the

functional form (similar to Bourgain-Milman’s

reverse of Santaló’s original geometric inequality).

Theorem (Klartag-Milman; 2005). ∃c > 0, C

s.t. ∀ log-concave f : R
n → R

+,
∫
f < ∞, we

have

c <

( ∫

Rn
f ·

∫

Rn
f◦
)1/n

.
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Functional form of Urysohn inequality

(Klartag–Milman)

(Urysohn inequality for log-concave functions)

Recall the classical Urysohn inequality:

(
VolK

VolD

)1/n

≤ M?(K) :=

∫

Sn−1
sup
y∈K

(x, y)dσ(x)

and

Vol(D+εK) = VolD+εnM?(K)VolD+O(ε2).

So, we may define the analogous quantity. Let

G(x) = e−|x|2/2. Then define

VG(f) = lim
ε→O+

∫
G ? [ε · f ] − ∫

G

ε

(one may show that lim exists).
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Denote M?(f) = 2
VG(f)
n
∫
G

=
VG(f)

n
2(2π)

n/2.

Then M?(G) = 1.

If f = 1K then (calculation)

VG(1K) =
(2π)

n−1
2 nκn

κn−1
M?(K)

(κn = VolDn).

So M?(K) = cnM?(1K) for cn ∼ √
n.

Properties: M?(f ? g) = M?(f) +M?(g)

M?(λ · f) = λM?(f), λ > 0.
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Theorem (Klartag–M., 2005). Let f : Rn → [0,∞]

be an even log-concave function s.t.
∫
f =

∫
G

(= (2π)n/2. Then

M?(f) ≥M?(G) = 1.
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(ii) A Central Limit Theorem (CLT) for

Convex Sets

In the classical approach, we study a geometric

shape of projections (or sections) of convex

body K (and we know that they are, with high

probability, close to euclidean balls for small

enough rank of projections).

But what about measure projections (marginals)

in place of geometric projections?

(Gromov ’87)

Normalize the convex body K ⊂ Rn s.t.

VolK = 1,
∫

K
~xdx = 0,

∫

K
〈x, θ〉2dx = |θ|2L2

K,

for any θ ∈ Rn. We say that K is in “isotropic”

position and the constant LK is called the

isotropic constant of K.
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Then most marginals are approximately gaussian!

Progress towards this goal was obtained earlier by

Brehn–Voigt (2000) and Antilla–Ball–Perissinaki

(2003) and others. But the complete solution

was achieved recently by Klartag:

Theorem (Klartag, ’06):

Suppose K ⊂ Rn is convex and isotropic, and

X is distributed uniformly in K.

Then ∃Θ ⊂ Sn−1 with σn−1(Θ) ≥ 1 − δn, such

that for θ ∈ Θ,

sup
A⊂R

∣∣∣∣∣Prob
{
〈X, θ〉 ∈ A

}
− 1

LK
√

2π

∫

A
e
− t2

2L2
Kdt

∣∣∣∣∣ ≤ εn.

Here, say, δn < exp(−c√n), εn < C(n−1/30).

There is an analogue multi-dimensional version.

The proofs of these results use, very essentially,

the extension of the whole theory to the log-

concave category.

51



A Sketch of the Proof

It will consist of a few steps. Let µ be the

uniform distribution over K, i.e. µ = 1Kdx.

Step 1. Change the problem and consider

another measure (convolution with a gaussian

N(0; ε2))
ν = µ ∗ γε

where γε has the density 1
(
√

2π)nεn
e−|x|2/2ε2.

ν is log-concave measure.

Step 2. Consider marginal PEν of ν on k-dim.

subspace E ∈ Gn,k and its density (dPEν/dx)(x)

at x ∈ E.

Important observation: log of this density

g(E;x) = log

(
dPEν

dx

)
(x)

has the Lip. constant (with respect to E and x)

strongly improved (and the role of gaussian γε

is crucial here). Actually it could even be ∞
before convolution.
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Step 3. As a consequence, on a “random”

subspace E ∈ Gn,k (for k ∼ nκ, for some κ > 0)

g is almost spherically invariant.

Step 4. The measure PEν on E (now a fixed

subspace) is log-concave and ∼ spherically

symmetric. This implies that it is strongly

concentrated around ONE sphere (of, say,

radius R). Also, this radius R may be taken

independently of E. (This means that for some

α > 0 and β > 0

P
{∣∣∣|x| −R

∣∣∣ ≥ t
}
≤ ce−c1n

αtβ. )
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Step 5. Because Step 4 is true for random E,

it follows that also ν itself is strongly concen-

trated around the sphere of radius R1 ∼
√
n
k R.

Step 6. Return to the orginal measure µ. It is

also strongly concentrated around ONE sphere

(because gaussian γε is taken negligibly small).

Step 7. Then its marginal is gaussian because

it is true for a sphere.

50c



(iii) Isotropic position and isotropic con-

stant (Slicing problem)

We repeat that a convex body K ⊂ Rn, with

the barycenter of K at 0, is in isotropic position

iff VolK = 1, and ∀i, j = 1, . . . , n
∫

K
xixidx = δijL

2
K

(x = (x1, . . . , xn)). We call LK the isotropic

constant of K. It is an old and famous problem

of Bourgain if isotropic constants {LK} are uni-

formly bounded (by dim. n and convex bodies

in Rn). Well-known 20 year old estimate of

Bourgain states that LK ≤ Cn1/4 logn.

However, recently Klartag proved

Theorem (Klartag, ’05). For any convex body

K ⊂ R
n and ε > 0 there exists a convex body

T ⊂ R
n, s.t.

(1 − ε)T ⊂ K − x0 ⊂ (1 + ε)T

and LT < c/
√
ε.
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Corollary (Klartag ’05, relies on Paouris’ recent

theorem).

LK < Cn1/4 when K ⊂ R
n.

Important to note the proof of the last theorem

requires the extension of Asymptotic Theory

of Convexity to the category of log-concave

measures.
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To give some details we need to establish a

connection between log-concavity and convex

bodies.

For any even log-concave f : R
n → R

+
we

associate a norm (K. Ball, 1990)

‖x‖f =

(∫ ∞

0
nf(rx)rn−1dr

)−1/n
.

Denote Kf the unit ball of ‖ · ‖f .

A few properties of this correspondence:

1. VolKf =
∫
f

2. Define Kf = {x ∈ R
n : f(x) > e−n}. Then,

for a universal c > 0,

Kf ⊂ Kf ⊂ cKf .
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3. Let f and g – log-concave and f(0) =

g(0) = 1. Then, for some universal con-

stants c1 and c2

c1Kf?g ⊂ Kf +Kg ⊂ c2Kf?g

and

c1nK
◦
f ⊂ Kf◦ ⊂ c2nK

◦
f .
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Let us define the isotropic constant of log-

concave measure.

We say that f is in isotropic position if

Sup
x∈Rn

f(x) = 1 =

∫
f(x)dx and

∫

x∈Rn
xixj fdx = δijL

2
f

and the constant Lf is called the isotropic constant

of the measure fdx.

One may write a formula for Lf without “putting”

fdx in the isotropic position,

Lf =




Sup
x∈Rn

f(x)

∫
Rn fdx




1/n

(detCov f)1/2n

where covariance matrix

Cov f =
(
Covf(xi, xj)

)
,

Covf(xi, xj) =

∫
Rn xixjfdx∫

fdx
−
∫
xif∫
f

·
∫
xjf∫
f
.

Then, for any K convex, LK = L1K.
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A sketch of Klartag’s proof of a solution

of the “isomorphic” slicing problem.

Let K – convex compact, O ∈ K, VolK = 1.

1. Let f : K → [0,∞) and log-concave.

Assume



Sup
x∈K

f

infx∈K f




1/n

< C.

Then Kf isomorphic to K, i.e. ∃ c1 := c1(c)

s.t.

1

c1
Kf ⊂ K ⊂ c1Kf

(here, as before,

Kf =
{
x ∈ R

n;
∫ ∞

0
nf(rx)rn−1dr ≥ 1

}

and is a convex set by K. Ball).
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2. (K. Ball) Lf ' LKf .

So, we should find such an f that Lf <

const.

3. Consider a (convex) function FK(x) = F(x)

F(x) = log
∫

K
e〈x,y〉dy.

(a) This function produces a transportation

of measure

∇F := ψ : R
n −→

◦
K

(similar to the so called ‘momentum’

map) which means that

∀A ⊂ R
n,

∫

A
detHessF = Vol((∇F)A) ≤ 1.
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Let µ1 and µ2 be two Borel measures in Rn

and T : Rn → Rn s.t. ∀A ⊂ Rn (measurable)

µ2(A) = µ1(T
−1A).

Then T transports µ1 to µ2.

Equivalently, ∀ϕ ∈ C+(Rn)

∫

Rn
ϕ(x)dµ2(x) =

∫

Rn
ϕ(Tx)dµ1(x).

Fact. Let F : Rn → R be C2-smooth strictly

convex and K = Im(∇F). Let measure µ have

density
dµ
dx = detHessF(x).

Then ∇F : Rn → Rn transports µ to Vol|K.

Applying to our situation, we see that ∇FK
transports the measure µK to the uniform

measure on K.
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(b) Note that ∇F(x) =
∫
y dµK,x(y) and the

density of µK,x is

e〈x,y〉1K(y)
∫
K e

〈x,z〉dz
.

Also Hess(F)(x) = Cov(µK,x).

Therefore

detHessF(x) =
( ∫

fx/Sup fx
)2 · L2n

fx

where fx(y) = e〈x,y〉1K(y).

So, we consider the family of log-concave

functions and we search for a function

as in 1. and 2. inside this family.
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4. Let x ∈ nK◦. (Note: |K| = 1 ⇒ |nK◦|1/n ∼ 1.)

(a) Then




Sup
y∈K

fx(y)

infy∈K fx(y)




1/n

< C.

Indeed, Sup
y∈K

fx(y) = Sup
y∈K

e〈x,y〉 ≤ e‖x‖∗ ≤

en. (Similarly for inf ≥ e−n.)

So we know that Kfx ∼ K for ∀x ∈ nK◦.
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(b) We want to find x ∈ nK◦ s.t.

Lfx < Const., i.e. to estimate

(
detHessF(x)

)1/2n
(
Sup fx∫

fx

)1/n

<?

Actually, it is enough to find x ∈ nK◦,

s.t.

detHessF(x) < Const.n.

We prove this “in average”:

1

|nK◦|

∫

nK◦ detHessF(x)

≤ 1

|nK◦| Vol(Im(∇F)) ≤ Cn

(reverse Santaló).
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What is next?

Does the family of log-concave measures represent

the largest class of probability measures where

Geometry is extended so naturally?

It is not clear; but let us consider a much

larger class of “convex measures” (I also like

the terminology “hyperbolic measures”).
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Definition (C. Borell, ’74): Fix −∞ ≤ s ≤ 1;

a measure µ on Rn is s-concave iff ∀A,B ⊂ Rn

non-empty and measurable, t ∈ (0,1),

µ
(
tA+ (1 − t)B

)
≥
[
tµ(A)s + (1 − t)µ(B)s

]1/s
.

Note, for s = 0,

µ
(
tA+(1−t)B

)
≥ µ(A)tµ(B)1−t (log-concavity)

and, for s = −∞,

µ
(
tA+ (1 − t)B

)
≥ min

(
µ(A), µ(B)

)
.

Denote M(s) the class of all finite s-concave

measures. Clearly M(si) ⊇ M(s2) for s1 < s2.

New example: Cauchy distribution with density

p(x) =
cn

(1 + |x|2)
n+1
2

;

in this case s = −1 (“heavy tails” distributions).
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C. Borell: (i) ∀µ ∈ M(−∞) has a convex

suppK ⊂ Rn and µ is abs. continuous (w.r.t.

Lebesgue measure on K);

(ii) If µ is s-concave, then s ≤ 1/dimK;

(iii) If dimK = n, the density p of µ satisfies

∀x, y ∈ K

p
(
tx+ (1 − t)y

)
≥
(
tp(x)sn + (1 − t)p(y)sn

)1/sn

for sn = s
1−ns.

(So, if µ is log-concave then also its density is

a log-concave function; however,

if s = −∞ then its density is −1
n concave, and

we call this class convex measures).

Also, levels of density of convex measures are

boundaries of convex sets.
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Connection with Classical Convexity

The definition of convex measures corresponds

to the unified principle behind most (all) geometric

inequalites, a principle of minimization:

f(A;B) ≥ min
{
f(A;A), f(B;B)

}

[“the minimum is achieved on equal objects”].

I call inequalities satisfying this principle

geometric inequalities of hyperbolic type.

To continue this study we need to recall a few

facts from Convex Classic.

Next we use a short notation |K| for VolK.
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A. From Convex Classic:

1. Brunn-Minkowski ineq.: K,T ⊂ R
n,

|K + T |1/n ≥ |K|1/n + |T |1/n.

2. Notion of mixed volumes:

Ki – convex ⊂ Rn, λi ≥ 0, m ≥ n
∣∣∣∣∣

m∑

1

λiKi

∣∣∣∣∣ =
∑

1≤i1≤···≤in≤m
λi1λi2·. . .·λinV (Ki1, . . . ,Kin)

coefficients (invariant w.r.t. permutations) –

called mixed volumes.

Special case (Dn is the euclidean ball in Rn):

|K + tDn| =
n∑

0

(n
i

)
Wi(K)ti,

where Wi(K) = V (K, . . . ,
n−i

K,D, . . . ,
i
D)

– i-th Quermassintegral

(other notation: Wi(K) := Vn−i(K)). Then

Wi(K + T)1/n−i ≥Wi(K)1/n−i +Wi(T)1/n−i.
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3. Alexandrov-Fenchel inequalities:

V (K,T,A3, . . . , An)
2

≥ V (K,K,A3, . . . , An) · V (T, T,A3, . . . , An)

and particular cases, called Alexandrov ineq.,

(
Vi(K)

|Dn|

)1/i

≥
(
Vj(K)

|Dn|

)1/j

, 1 ≤ i < j ≤ n.

(The case i = 1 and j = n is Urysohn’s

inequality.)
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B. Going back in time to locate very similar-

looking numerical inequalities.

Newton inequalities:

Let x = {xi}ni=1 – positive numbers

Elementary symmetric (and normalized)

functions 1 ≤ i ≤ n

Ei(x1, . . . , xn) =
1(
n
i

)
∑

1≤j1<···<ji≤n
xj1 ·xj2 · . . . ·xji

(and E0 ≡ 1).

So E1(x) – arithmetic means,

En(x) – geometric means.

68



For k = 1, . . . , n− 1

E2
k(x) ≥ Ek−1(x1, . . . , xn)·Ek+1(x1, . . . , xn). (N)

=⇒ Corollary (Maclaurin)

E1(x) ≥ E
1/2
2 (x) ≥ · · · ≥ E

1/n
n (x).

(Recall Alexandrov ineq.; and arithmetic-geom.

mean ineq. is analogous to Urysohn inequality).

Indeed:

(N) for k = 1: E2
1 ≥ E2 ⇒ E1 ≥ E

1/2
2

k = 2: E2
2 ≥ E1 · E3 ⇒≥ E

1/2
2 E3 ⇒

⇒ E
1/2
2 ≥ E

1/3
3 ,

and so on.

Proof of (N): Use polynomials with real roots.

Direction of ineq. in (N) is consequence of

real roots (and “hyperbolic” is named because

of it).
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Proof of (N): Consider

P(x) =
n∏

1

(x− xi) =
n∑

0

(−1)j
(n
j

)
Ejx

n−j

or, in homogeneous form

Q(t, τ) = τnP

(
t

τ

)
=

n∑

j=0

(−1)j
(n
j

)
Ej(~x)t

n−jτ j

(Note: for a fixed τ , only real roots by t, and

for fixed t, real roots by τ .)

Take (n− k−1) times derivative of P by t and

then (k − 1) times by τ ; we have

n!

2
Ek−1t

2 − n!Ektτ +
n!

2
Ek+1τ

2,

and for, say, τ = 1, this polynom has real roots

in t. This means

E2
k ≥ Ek−1 · Ek+1 !
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To feel analogy even more, few “modern”

numeric inequalites (Markus-Lopes, 1956):

Ek(x+y)1/k ≥ Ek(x)
1/k+Ek(y)

1/k, k = 1, . . . n

(k = 1 – equality; k = n follows from geom.

arithm. means ineq.)
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C. Multi-dimensional (but still numerical) case.

Let Sn be the space of real sym. n×n matrices.

If Ai ∈ Sn, ti > 0, then

det(t1A1 + · · · + tmAm)

=
∑

1≤i1≤···≤in≤m
n!D(Ai1, . . . , Ain)ti1 · ti2 · · · tin.

Coefficient D(A1, . . . , An) is called the mixed

discriminant for A1, . . . , An.

That P(t) = det(A+ tI) has only real roots for

any A ∈ Sn leads to many interesting inequalities

(similar to Newton ineq.) (Alexandrov, and

later more general theory was built).
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Examples: Let A,B,Ci ≥ 0.

Alexandrov inequality (similar to

Alexandrov-Fenchel for convex bodies)

D(A,B,C3, . . . Cn)
2 ≥

≥ D(A,A,C3, . . . , Cn) ·D(B,B,C3, . . . , Cn)

or its consequence

D(A1, . . . , An) ≥
n∏

1

(detAi)
1/n (Ai ≥ 0)

(and it is true that, for mixed volumes,

V (K1, . . . ,Kn) ≥
( n∏

1

|K|
)1/n

).
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Again, the reverse triangle inequality, i.e.

concavity of [detA]1/n is true (Minkowski

inequality):

for Ai ≥ 0

[det(A1 +A2)]
1/n ≥ [detA1]

1/n + [detA2]
1/n

(proof is immediate from geom.-arithm. means

ineq.)
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Before we discuss “technical” connections

between the convex theory (A) and the

numerical [(B) and (C)], let us see the

unified principle behind all of these

inequalities.

All of them have a form of a principle of

minimization

f(A;B) ≥ min
{
f(A;A), f(B;B)

}

[“The minimum is achieved on equal objects”],

which is, in fact, equivalent to the original

inequalities.
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Examples: (i) Alexandrov–Fenchel inequality is

equivalent to

V (A;B;C1, . . . ) ≥

min
(
V (A;A;C1, . . . );V (B;B;C1, . . . )

)

(ii) Brunn–Minkowski ineq.: ∀ t, τ > 0 and A,B

convex:

|tA+ τB|1/n ≥ t|A|1/n + τ |B|1/n

is equivalent to

|tA+ τB| ≥ min
(
|(t+ τ)A|, |(t+ τ)B|

)
.

And so on, and so on, and so on!

Is this an incidental similarity to “convex

measure”, i.e. s-concave measures for

s = −∞?

Or does a deeper meaning lie behind it?
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How are numerical (multi-dimensional) and

convexity theories connected?

First, we describe a couple of remarkable maps.

Let |T |/|K| = λ, K and T convex bodies.

Knothe map. Fix euclidean structure and or-

thogonal coordinate system.

build ϕ :
◦
K −→

◦
T ,

measure preserving

ϕ =
(
ϕ1(x1), ϕ2(x1, x2), ϕ3(x1, x2, x3), . . . , ϕn(x)

)

∂ϕi
∂xi

:= λi(x) and
∏
λi = λ.
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Example of use:

|K + T | ≥
∣∣∣{x+ ϕ(x) | x ∈

◦
K}

∣∣∣ =

=

∫

K
det(I + Jacϕ)ds =

=

∫

K

∏
(1 + λi) ≥

∫

K

(
1 +

(∏
λi
)1/n)n

dx =

= (1 + λ1/n)n · |K|

=⇒ |K + T |1/n ≥ |K|1/n + |T |1/n.
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Brenier map.

Let K and T be convex compact bodies. Fix

euclidean structure. Then there is

ψ :
◦
K

onto−→
◦
T

which is “measure preserving”, i.e.

det Jacψ = Const. := a and ∃ f , Dom f =
◦
K,

convex and

ψ = ∇f.

Example of use:

|K + T | =
∫

K
det(I + Hess f)dx ≥

∫

K
(1 + a1/n)ndx =

= |K|(1 + a1/n)n

(note a · |K| = |T |), which implies the Brunn-

Minkowsky inequality.
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Warning:
◦
K+

◦
T may be 6= {x+ψ(x) | x ∈

◦
K}.

However (Alesker-Dar-Milman, 1999)

∃u :
◦
K

onto−→
◦
T

“measure preserving”, s.t.

◦
K +

◦
T =

{
x+ u(x) | x ∈

◦
K
}
.

We use construction differently.

Let γ be Gaussian standard measure on Rn,

Ki – convex bodies. Let |Ki| = 1.
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Step 1. Use the Brenier (-McCann) maps:

ψi – Brenier maps

ψi : (Rn, γ) −→ (
◦
Ki,Vol),

ψi = ∇fi, fi – convex functions on R
n and

smooth (by a deep result of Caffarelli).

Step 2 (Gromov). ∀ ti > 0

Im
∑

tiψi =
∑

Im tiψi :

(Rn, γ)

∑
tiψi−−−−→

onto

∑
ti Im∇i =

∑
ti

◦
Ki.
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Therefore:

∣∣∣
∑

tiKi
∣∣∣ =

∫

Rn
det

(∑
tiAi

)
dx

{
here Ai = Hess fi =

(
∂2fi
∂xk∂x`

)}

=
∑

1≤i1···≤in≤n
n!ti1 · . . . · tin

∫
D(Ai1, . . . , Ain)dx,

So we have proved polynomiality and

V (Ki1, . . . ,Kin) =

∫

Rn
D(Ai1, . . . , Ain)dx.

As ψi – measure preserving, det
(
∂2fi
∂xk∂x`

)
(x) = γ(x)

(assuming |Ki| = 1), and (e.g.) from determinant

inequality

D(A1, . . . , An) ≥
(∏

detAi

)1/n

follows

V (K1, . . . ,Kn) ≥
∫

Rn

( n∏

1

Hess fi

)1/n

dx

=

∫

Rn
γ dx = 1

(
=

(∏
|Ki|

)1/n)
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III. Concentration Phenomenon

Isomorphic Form of Isoperimetric

Problems

The standard form

Let (X, ρ, µ) be a metric probability space.

Let A be a measurable subset of X

and µ(A ⊂ X) ≥ 1/2.

Define Aε = {x ∈ X, ρ(x,A) ≤ ε}.

Define the function α(X; ε) = 1 − infA µ(Aε)

called the concentration function of X.
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Consider a family X = {(Xn, ρn, µn)}.

For “natural” families, two estimates are typical:

α(Xn, ε) ≤ c1 exp(−c2ε2n) (∗)

or

≤ c1 exp
(
− c2ε

√
n
)

(∗∗)

If (∗) is satisfied, X is called normal Lévy family;

these are “elliptic type” families.

Examples: Sn; Wn,k; SO(n); tori Tn,

Fn2 = {±1}n, Πn – permutation group

(metrics and measures should be specified).

Examples of families satisfying (∗∗) (I call them

“hyperbolic type”):

SL2(Zp) or, for any fixed k ≥ 2, SLk(Zp) where

p plays the role of “n” above.
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The concept of a Lévy family (and especially

a normal Lévy family) generalizes the concept

behind the law of large numbers in two

directions:

a) the measures are not necessarily the product

of measures (that is, we have no condition of

“independence”), and

b) Lipschitz functions on the space are

considered instead of linear functionals only.
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To explain the reason for terminology

“concentration phenomenon” and also outline

why a bound of the form (∗) is so crucial, let

us consider a 1-Lip function f(x) defined on

(X, ρ, µ), i.e.

∣∣∣f(x) − f(y)
∣∣∣ ≤ ρ(x, y) .

Denote Lf the median of f(x), which is defined

by

µ
{
x ∈ X

∣∣∣ f(x) ≥ Lf
}
≥ 1

2

and

µ
{
x ∈ Z

∣∣∣ f(x) ≤ Lf
}
≥ 1

2 .

Then

µ
{
x ∈ X

∣∣∣ |f(x) − Lf | < ε
}
≥ 1 − 2α(X, ε) .

If α(X, ε) is very small, then the values of

Lipschitz function “concentrate” in the

measure around one value, meaning it is

almost constant with high probability.
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This is the case in all examples we

mentioned above. It is a general property of

high-dimensional metric probability spaces

which is called “concentration phenomenon”.

Such a “concentration” of measure balances

the exponentially high entropy of n-dimensional

spaces and leads to a “regularity” in high

dimension, keeping “diversity” under control.

The absolute constants involved in the

examples are needed to balance rates of

exponential decay (coming from Concentration)

and exponential expansion (coming from

covering/entropy). Surprisingly, both exponents

have “roughly” the same order of decay via

expansion by dimension and only a factor is

needed to compensate them.
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Consider an example:

Let X be Sn+1, the euclidean unit sphere in R
n+2.

Then

α(X, ε) ≤ c1 exp(−ε2n/2).

Let N = {xi}Ni ⊂ Sn+1 and N < c1 exp(ε2n/2).

Then ∃u ∈ O(n), s.t.

f(uxi) ∼
ε
Lf .

(Various functions and configurations provide

various geometric consequences.)

Functional point of view. Let N = {µi}Ni=1

be probability measures on Sn+1. Let f(x) be a

1-Lip. function on Sn+1. Let N ≤ c exp(ε2n/8).

Then

∃u ∈ O(n) s.t. ∀ i = 1, . . . , N,∣∣∣∣
∫

sn+1
f(ux)dµi(x) − Lf

∣∣∣∣ < ε.

(If µi(x) are δ-measures we return to the

previous example.)
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There are two ways extending the concept of

concentration:

(i) For metric G-spaces (X, ρ) without any

measures involved (Gromov-Milman, ∼1985);

(ii) Probability spaces (X,µ) without any

metric involved (Giannopoulos-Milman, 2000).
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