
This article provides an overview of the relationships 
among working memory, math performance, and math 
anxiety. We provide examples from the mathematical 
cognition literature to show: the critical role of working 
memory in performing arithmetic and math; the relation-
ship between math performance and math anxiety, espe-
cially on standardized math achievement tests; and finally, 
the way that math anxiety compromises the functioning 
of working memory when people do arithmetic and math. 
We conclude with some predictions concerning the risk 
factors for math anxiety, and with some of the educational 
implications of this work. See Ashcraft and Ridley (2005) 
and Ashcraft, Krause, and Hopko (2007) for full-length 
treatments of these issues. Excellent summaries of the 
entire field of mathematical cognition can be found in 
Campbell (2005).

We begin with a statement concerning just one justifi-
cation (of many) for this work. Math and science are in the 
headlines these days, with research-based reports about 
the relatively poor job American schools do in teaching 
math and science, and the depressingly substandard job 
many students are doing in mastering these topics. No one 
doubts the importance of math and science to the work-
force in a technological society, or their importance in 
general to an educated populace. So there is a general, 
undeniable need for investigations about the learning and 
mastery of math. And from a disciplinary perspective, the 
rich complexity of math in all its facets suggests that it 
should be an interesting topic for cognitive psychology 
to address, and a critical one in any discussion of the rel-
evance of cognitive psychology to education.

Working Memory and Math Performance
Considerable evidence has appeared in the past 10 to 

15 years concerning the vital role that working memory 
plays in mathematical cognition. In LeFevre, DeStefano, 
Coleman, and Shanahan’s (2005) view, the literature now 
supports a clear generalization concerning the important 
positive relationship between the complexity of arithmetic 
or math problems and the demand on working memory for 
problem solving. One aspect of this relationship involves 
the numerical values being manipulated, and one aspect 
examines the total number of steps required for problem 
solution. We take these in turn.

It is now clear that working memory is increasingly 
involved in problem solving as the numbers in an arith-
metic or math problem (the “operands”) grow larger. The 
benchmark effect in this area is the problem-size effect, 
the empirical result that response latencies and errors in-
crease as the size of the operands increases: For example, 
6  7 or 9  6 will be answered more slowly and less 
accurately than 2  3 or 4  5 (see Zbrodoff & Logan’s 
2005 review). Part of this effect, we have argued, is due 
to the structure of the mental representation of arithme-
tic facts in long-term memory, and the inverse relation-
ship between problem size and problem frequency—for 
example, in textbooks (e.g., Hamann & Ashcraft, 1986). 
That is, larger arithmetic problems simply occur less fre-
quently, and hence are stored in memory at lower levels of 
strength (see Siegler & Shrager, 1984, for a comparable 
approach); this is similar in most respects to the standard 
word-frequency effect found in language processing re-
search. A second part of the effect, documented in the 
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past 10 years, is the increasing tendency for larger op-
erand problems to be solved via some nonretrieval pro-
cess, whether it be counting, reconstruction from known 
problems, or other strategies (see, e.g., Campbell & Xue, 
2001; LeFevre, Sadesky, & Bisanz, 1996). Because non-
retrieval processing is invariably found to be slower and 
more error prone than memory-based retrieval, the occur-
rence of strategy-based trials will slow down overall re-
sponse latencies, especially for larger problems. Critically 
for the present discussion, strategy- or procedure-based 
performance will rely far more heavily on the resources of 
working memory in comparison with performance based 
on relatively automatic memory retrieval.

We illustrate this with a series of experiments reported 
in Seyler, Kirk, and Ashcraft (2003). In this work, we tested 
college adults on the “basic facts” of subtraction—that is, 
the inverses of the addition facts 0  0 up to 9  9. As 
shown in Figure 1, there was a gently increasing problem-
size profile on response latency up to 10  n problems, 
but then a dramatic increase in reaction times (RTs) be-
ginning with 11  n problems; error rates jumped from 
below 5% to the 10%–22% range at the same point. The 
dramatic change in the performance profiles suggested 
strongly that the larger subtraction problems were being 
solved via strategies. To test this possibility, we repeated 
the study, asking participants to answer the question “How 
did you solve the problem?” after each trial. The reported 
incidence of strategy use matched the RT and error pro-
files very closely; strategy use was reported an average of 
3% of the time on small subtraction problems, but on 33% 
of the trials with large problems. On this evidence, simple 

subtraction is heavily reliant on strategy use, a pattern 
that should disadvantage participants if they are laboring 
under limited working memory resources.

To document this final prediction, we tested simple 
subtraction in a dual task setting: Participants held two, 
four, or six random letters in working memory while per-
forming the subtraction; they then had to report the letters 
in serial order. The dual task led to a significant decrement 
in performance, as measured by accuracy of letter recall. 
Importantly, this decrement was especially pronounced 
for the large subtraction problems, those that relied heav-
ily on strategies rather than on retrieval. And the pattern 
was exaggerated when participants’ own working memory 
capacity was considered. There was substantially more in-
terference with letter recall for the low-working-memory-
span participants (a 56% error rate in the most difficult 
condition) than for the medium- or high-span groups (re-
spectively, 46% and 31% error rates; Seyler et al., 2003, 
Figure 7). In short, there was an increasing cost of the 
dual task requirement for participants with lower work-
ing memory capacity. Simple subtraction, an arithmetic 
operation introduced routinely in second grade, has a 
substantial working memory component to it, especially 
because even adults continue to rely heavily on strategy-
based processing instead of memory retrieval. Such reli-
ance disadvantages participants whose working memory 
is occupied by a secondary task, and also those whose 
working memory capacity is low.

The important point here is that strategy-based solu-
tions are not just slower, but far more demanding on work-
ing memory, whereas memory retrieval is usually found 
to be a fast and relatively automatic process, with little 
or no demand on working memory resources. Reports 
consistent with this generalization are now common—for 
example, work showing the dramatic decline in latencies 
and working memory involvement as a function of prac-
tice on difficult math (Beilock, Kulp, Holt, & Carr, 2004; 
Tronsky, 2005).

Similarly, the number of steps in a problem solution 
is generally strongly correlated with response times, and 
with the working memory resources necessary for correct 
solutions; this is roughly analogous to the increase in pro-
cessing load with an increase in the number of clauses in a 
sentence, for instance. As an example, Hecht (2002) found 
that a concurrent articulatory task disrupted addition tri-
als performed via counting far more than it did trials per-
formed via retrieval (see comparable results in a test of 
sequential adding by Logie, Gilhooly, & Wynn, 1994).

In our test of the relationship between number of steps 
and working memory (Ashcraft & Kirk, 2001), we rea-
soned that the carry operation in addition should require 
additional working memory processing, because carrying 
adds yet another step to the processing sequence. We pre-
sented participants with addition problems ranging from 
basic addition facts up to two-column additions; half of all 
problems required a carry (e.g., 27  14; see also Fürst & 
Hitch, 2000). The results were clear cut (see Ashcraft & 
Kirk, 2001, Figure 1). Carry problems were considerably 
slower than their noncarry counterparts, fully 1,200 msec 
slower for the largest problems. Likewise, carry problems 
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invariably had higher error rates (from 5.2% to 9.4%) than 
their noncarry counterparts (0.2% to 2.1%).

It appears that working memory processing is integral 
to arithmetic and mathematics performance whenever a 
procedure other than direct memory retrieval is operating. 
That is, when simple one-column addition or multiplica-
tion is being performed, the underlying mental process 
responsible is principally retrieval from memory, in which 
case working memory plays a minor role, at best. But 
when performance relies on algorithmic procedures—
say, carrying—or when other reconstructive strategies are 
used, then working memory is crucial. Likewise, for multi-
step problems, there is an increasing reliance on working 
memory as the number of steps increases (see, e.g., Ayres, 
2001), and at points in problem solving when the need for 
retaining intermediate goals and values is highest (see, 
e.g., Campbell & Charness, 1990).

Math Performance and Math Anxiety
Serious research on math anxiety began to appear in 

the early 1970s, when a suitable objective instrument for 
measuring math anxiety became available. Since that time, 
scores of articles have appeared on the various psychometric 
properties of the original scale and its descendants, and on 
the relationships between math anxiety and a host of other 
characteristics. The best summary of this work remains the 
Hembree meta-analysis (1990), which, for the most part, 
is the source of the following correlations between math 
anxiety and various aspects of math performance.

The story told by the correlations is sad indeed. The 
higher one’s math anxiety, the lower one’s math learning, 
mastery, and motivation; for example, a math anxiety 
correlation of .30 with high school grades, .75 with 
enjoyment of math, .64 with motivation to take more 
math or do well in math, and .31 with the extent of high 
school math taken. The overall correlation between math 
anxiety and individuals’ math achievement, as measured 
by standardized tests, is .31. Thus, highly math-anxious 
individuals get poorer grades in the math classes they 
take, show low motivation to take more (elective) math, 
and in fact do take less math. They clearly learn less math 
than their low-anxious counterparts.

These correlations mean, simply but importantly, that as 
math anxiety increases, math achievement declines. This 
seemingly inherent relationship between math anxiety 
and achievement poses a genuine interpretive quandary: 
Is lower performance on a math task due to math anxiety 
or to lower mastery and achievement in math? Fortunately, 
our work suggests a partial way out of the quandary. That 
is, we collected scores from some 80 undergraduates on 
a math-anxiety assessment and also on the Wide Range 
Achievement Test (WRAT), a standard math achievement 
test. The correlation between math anxiety and the com-
posite WRAT score was .35, very close to the value in 
Hembree’s (1990) meta-analysis. But we then rescored 
the WRAT performance, taking advantage of its line-by-
line increases in difficulty (e.g., whole-number addition 
in Line 1, multiplication of fractions in Line 5, solving 
for two unknowns in Line 8). When the test is scored in 
this fashion, the impact of math anxiety is much clearer; 

see Figure 2. Simple accuracy is at ceiling for all groups 
on the initial lines of the test, suggesting no evidence of 
lower achievement per se for math-anxious individuals on 
the whole-number arithmetic taught in elementary school 
(i.e., even high-anxious individuals can answer whole-
number problems correctly). Likewise, when we gave un-
timed paper-and-pencil tests of our whole-number arith-
metic stimuli, we found no math-anxiety differences on 
accuracy, even though these same stimuli generated online 
anxiety effects in an RT task (Faust, Ashcraft, & Fleck, 
1996). But group performance on the WRAT does start to 
diverge around Line 4 or 5: On the most difficult line of 
the test, the high-anxious group averages fewer than one 
in five problems correct. Thus, the lower achievement of 
math-anxious individuals seems limited to more difficult 
math, the math taught at or after late elementary school.

Note a second point as well. Scores on such achieve-
ment tests probably underestimate levels of math achieve-
ment among high-anxious participants. When students 
take math tests, especially high-stakes math achievement 
tests, it is very likely that their online anxiety reaction 
is disrupting their performance. In agreement with this, 
Hembree (1990) noted that for groups who undergo effec-
tive interventions for their math anxiety (cognitive behav-
ioral interventions), math achievement scores approach 
those in the normal range. Given that the interventions do 
not provide any instruction or practice in math, it follows 
that previously low achievement-test results could be at 
least partially explained by an online anxiety reaction that 
depressed preintervention scores.

The negative relationship between math anxiety and 
achievement is not universal across all forms of arithmetic 
and math, and not universal across all testing situations. 
Lab testing at the simpler levels of arithmetic need not 
worry about a confounding relationship between achieve-
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ment and math anxiety. Disentangling that confound at 
higher levels of difficulty will be much more difficult.

Working Memory and Math Anxiety
The question of how math anxiety compromises work-

ing memory has a more subtle answer than merely saying 
that math anxiety consumes the resources of the work-
ing memory system. For example, we used two different 
verbal-based span assessments, and found no significant 
anxiety-group differences at all. But when a computation-
based span task was administered, we found a pronounced 
decline in assessed working memory capacity; the full-
scale correlation was a significant .40 (Ashcraft & Kirk, 
2001, Experiments 1 and 3). We argue that a math-anxious 
person’s working memory resources are drained—that the 
individual suffers a compromised working memory—only 
when the actual math anxiety is aroused, as in span tasks 
that involve computations.

To demonstrate the joint effects of working memory and 
math anxiety, we had our participants do two-column ad-
dition, either alone or in combination with a letter-recall 
secondary task (Ashcraft & Kirk, 2001, Experiment 2). As 
Figure 3 shows, errors to the letter task grew only mod-
estly for the low-, medium-, and high-anxiety groups in 
the control conditions and in the two-letter load condition. 
But in the difficult six-letter condition, with the working-
memory-demanding carry problems, the effect of the dual 
task was quite strong, and affected the high-anxious group 
the most. Clearly, when the math task becomes demanding, 
and when the necessary resources from working memory 
are occupied by the secondary task, performance suf-
fers. Highly anxious participants, who are already wast-
ing working memory resources by attending to their own 
anxiety, suffer the most (if the dual task per se induced, 
say, high-state anxiety, independent of working memory, 
then errors should have increased on all dual task trials, 
including the noncarry problems). We are currently explor-
ing other ways in which this diversion of working memory 
affects the outcomes of mental processing.

A related anxiety effect bears brief mention as well. Our 
results show that high-math-anxious participants often sac-
rifice accuracy for speed, especially as problems become 
more difficult, which we interpreted as an avoidance-like 
effort to finish the testing session as quickly as possible 
(Faust et al., 1996). Consequences of this—say, in terms 
of achievement testing or learning from homework—have 
yet to be investigated.

Applications to Education
Math is an important topic in schooling and in prepara-

tion for careers; skill at math is often a filter in terms of 
career pathways. Math is also a cognitively challenging 
topic, one that involves manipulation of symbols in an 
often highly abstract setting. Furthermore, math must be 
taught in school, unlike language, which children learn 
naturally from their surroundings early in life. Presum-
ably, this should give cognitive psychology some advan-
tages in studying math, given that points in the math cur-
riculum can be specified—for example, the grade level at 
which prealgebra is introduced.

It bears repeating that there is a pervasive reliance 
throughout arithmetic and math on the working memory 
system, from simple counting and estimation processes 
(see, e.g., Siegler & Booth, 2005) up through algebra and 
complex problem solving (Ayres, 2001). Indeed, even at 
the earliest levels of formal education, there is a strong 
relationship between a child’s working memory span and 
performance on number-based tasks (see, e.g., Adams 
& Hitch, 1997). The need for working memory may be 
easy to overlook, given that even a difficult mathematics 
problem can be presented with far fewer symbols than, 
say, a complex, multiclause sentence. It is also the case 
that sentences, and the words that compose them, gener-
ally refer to more concrete concepts and ideas (objects, 
actions, events) than a typical math problem—even a 
word problem in math—does. The very abstractness of 
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Figure 3. Percentage errors to the letter task in control and 
dual task conditions, separately for two- versus six-letter memory 
loads and low-, medium-, and high-math-anxious groups. From 
“The relationships among working memory, math anxiety, and 
performance,” by M. H. Ashcraft & E. P. Kirk, 2001, Journal of 
Experimental Psychology: General, 130, p. 231, Figure 2. Copy-
right 2001 American Psychological Association. Adapted with 
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mathematical symbols surely adds to the difficulties that 
people encounter when learning math, including difficul-
ties in storing and using information in working memory. 
Acquiring the capacity for abstract thinking, of course, is 
a late developmental milestone. So far, relatively few proj-
ects have explored math processing beyond the four basic 
arithmetic operations, so the role of working memory at 
higher levels of math has hardly been investigated at all. 
Based on the central role identified so far, however, it can 
only be the case that more difficult math will be even more 
dependent on working memory. This would be especially 
true given the heavier burden on procedural processing at 
higher levels of math, and the lesser degree of automatic-
ity that might be attained by those procedures (the degree 
to which math procedures themselves can become more 
automatic is an almost totally ignored topic).

Turning now to math anxiety, several implications for 
education can be drawn. Math anxiety seems to influence 
cognitive processing in a straightforward way—working 
memory resources are compromised whenever the anxiety 
is aroused. Given the pervasiveness of working-memory-
dependent processing in arithmetic and math, this predicts 
serious effects of math anxiety. It is easy to imagine how 
math anxiety affects learning—say, in a high school math 
classroom. A student whose math anxiety is aroused is 
diverting needed attention away from the content of the 
class and toward internal worries and anxieties over math. 
This can only slow or degrade the mastery of the to-be-
learned information.

Further, the implications in the correlational literature 
seem unavoidable. Math anxiety leads to a global avoid-
ance pattern—whenever possible, students avoid taking 
math classes and avoid situations in which math will be 
necessary, including career paths. In an important study of 
math teachers’ approaches to teaching, Turner et al. (2002) 
showed how students with an unsupportive, “cold” teacher 
avoid in-school behaviors (making eye contact with the 
teacher, going to out-of-class help sessions). These sound 
like the ingredients for math anxiety. We predict that math 
anxiety is learned in the classroom—for example, when 
a student is called to the board to work a problem, does 
poorly, and is embarrassed in front of the teacher and his 
or her peers. In short, lower-than-average math abilities 
and/or working memory capacity, susceptibility to public 
embarrassment, and a nonsupportive teacher all may be 
risk factors for developing math anxiety (Ashcraft et al., 
2007). Once math anxiety is established, it then seems to 
be supported by a variety of cultural attitudes that under-
mine math achievement—for example, that math is hard, 
one either is or is not good at math, regardless of how hard 
one works, and so on.

We speculate one step further on the teacher’s role in the 
development of math anxiety. When college majors are 
given a math anxiety test, those who average the highest 
are individuals preparing to be elementary school teach-
ers (Hembree, 1990). Compounding this, students earn-
ing such degrees are typically required to take very few 
math courses (see also Ma, 1999). We thus suggest that 
the stage is set early on in math education for students 
to be “stranded” without a reasonable, instructive expla-

nation for many aspects of math, and/or in a classroom 
in which the teacher, possibly defensively, adopts an un-
supportive, “cold” teaching approach. Placing an at-risk 
child into such a teacher’s class may be the ideal recipe 
for creating math anxiety, a hypothesis we are beginning 
to investigate.

Cognitive psychology’s role should be to examine the 
acquisition and mastery of math and math procedures, and 
also the ways in which math anxiety has consequences 
for cognitive processing. Cognition can also help deter-
mine the developmental course of this learned anxiety, 
and explore the possibility that some genuinely cogni-
tive factors—for example, low math aptitude or working 
memory capacity—may be risk factors for math anxiety. 
Investigating the cognitive consequences of math anxiety 
may provide a rather unique opportunity, testing the im-
pact of a malleable individual difference, math anxiety, 
and its consequences on cognitive processing.

AUTHOR NOTE

Correspondence concerning this article should be addressed to M. H. 
Ashcraft, Psychology Department, University of Nevada, Las Vegas, 
Box 455030, 4505 South Maryland Parkway, Las Vegas, NV 89154-
5030 (e-mail: mark.ashcraft@unlv.edu).
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